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A B S T R A C T

In this paper we propose extension of the second-order thermodynamic perturbation theory (TPT2) for
the inverse patchy colloids (IPC) with arbitrary number of patches. The theory is used to study thermo-
dynamical properties and liquid-gas phase behavior of the IPC model with one, two and three patches.
To validate the accuracy of the TPT2 we compare theoretical predictions against corresponding results
obtained by computer simulations. The theory is accurate for the one-patch version of the model at all
values of the temperature and density studied and less accurate for two- and three-patch versions at
lower temperature and higher density. Theoretical predictions for the critical temperature and density of
the two- and three-patch IPC models are relatively accurate, however the overall shape of the theoretical
phase diagram appears to be too narrow. No liquid-gas phase coexistence for the one-patch IPC model was
found.

© 2016 Published by Elsevier B.V.

1. Introduction

Inverse patchy colloidal (IPC) model [1] is a coarse-grained ver-
sion of the model used to describe the properties of charged colloidal
particles with nonuniform distribution of the charge on the surface.
The model was developed to represent negatively charged colloids
with several positively charged star polyelectrolytes adsorbed on its
surface [2]. Coarse-graining procedure, which was used in Ref. [1], is
based on the application of Debye-Hückel theory. The final potential
acting between the two particle consists of the hard-sphere potential
with additional short-ranged spherically symmetric soft repulsive
potential and short-ranged orientationally dependent potential. The
latter potential appears due to the presence of the patches, which are
introduced to mimic adsorbed polyelectrolyte stars. Thus, in contrast
to the usual patchy colloidal models, in the case of the IPC model
interaction between patches is repulsive, attractive interaction is
valid between patches and colloidal center. These features of the
model is reflected in a very rich and unusual phase behavior (see
Refs. [3,4] and references therein), which can be used to generate
novel self-assembled materials with desired properties.

The properties of the IPC model were studied using computer
simulation methods in a number of publications [4–9]. More recently
multidensity integral equation approach of Wertheim [10] has been
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extended [9] and applied [9,11] to describe different versions of
the IPC models theoretically. Comparison of the theoretical and
computer simulation results show good performance of the theory
developed. However application of the integral equation theory in
general requires application of the numerical methods of solution.
Although recently an analytical method for the solution of the asso-
ciative Percus-Yevick approximation has been developed [11], it
is restricted to the case of the IPC model with interparticle pair
potential represented by the combination of hard-sphere and sticky
interactions.

In the present paper we propose extension of the second-order
thermodynamic perturbation theory (TPT2) of Wertheim [12] for
the IPC model. Important advantage of the theories based on the
TPT approach for associating fluids is due to their simplicity and
flexibility in application and also due to the possibility of using ana-
lytical methods of description. We consider here slightly simplified
version of the model, which allows us to formulate an analytical
version of the theory. To determine the accuracy of the theoretical
predictions we generate a set of the computer simulation data for
thermodynamics and phase behavior of the model at hand.

The paper is organized as follows. In Section 2, we present the
model, continue with description of the second-order TPT specialized
for the model at hand in Section 3 and in Section 4, we discuss details
of the computer simulations. Our numerical results and discussion
are presented on Section 5 and the paper is finished with concluding
remarks in Section 6.
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2. The model

The model particles are represented as the hard-sphere fluid
with additional orientational dependent attractive square-well and
repulsive hard-sphere potentials, which appear due to ns patches.
Interparticle pair potential U(1, 2) can be written as,

U(1, 2) = Uhs(r) +
ns∑

i=1

[Upic(1, 2) + Ucpi (1, 2)] +
ns∑

ij=1

Upipj (1, 2), (1)

where Uhs(r) is hard-sphere potential, Upic(1, 2) and Ucpj (1, 2) are
patch-center and center-patch potentials, respectively and Upipj (1, 2)
is patch-patch potential. Here 1 and 2 stand for the position and
orientation of the two particles and the lower indices pi and c denote
the patch of the type i and particle center, respectively. For the
patch-center and patch-patch potentials we have:

Upic(1, 2) =

{
4 < 0, for h

(1)
pi

< h0 and r < D + y

0, otherwise,
(2)

Upipj (1, 2) =

{
∞, for h

(1)
pi

, h(2)
pj

< h0 and r < D + y

0, otherwise,
(3)

where h
(1)
pi

is the angle between the line connecting the centers of
the two particles and the line connecting the center of the particle
1 and the center of its patch pi, y is the width of the patch-center
and patch-patch potentials and D is the hard-sphere diameter. The
width of the patch-center square-well potential is chosen to be
narrow enough, so that one-bond per patch restriction is satisfied. At
the same time due to the hard-sphere patch-patch repulsion of the
similar width y double bonding of the two particles is blocked.

In what follows we will consider one-, two- and three-patch
versions of the model with symmetric location of the patches, i.e. the
angle between the lines connecting the center of the particle and the
centers of its patches is equal to 180◦ in the two-patch case and to
120◦ in the three-patch case.

3. Second-order thermodynamic perturbation theory for inverse
patchy colloids

Important feature of our IPC model, which to a substantial degree
defines its properties, is due to substantial asymmetry in bonding
abilities of the patches and particle center. While each patch can be
bonded only once, the particle center can bond up to twelve patches,
each belonging to different particles. In addition, due to patch-patch
repulsion, formation of the double patch-center and center-patch
bond between two particles is not possible. To account for these fea-
tures of the model we will use appropriately modified second order
thermodynamic perturbation theory (TPT2) for associating fluid, pro-
posed by Wertheim [12]. According to Wertheim [13] Helmholtz
free energy of the system in excess to its reference system value
DA = A − Aref can be written as follows:

bDA
V

= q ln
s0

q
+

∑
a⊂C(a �=0)

casC−a − Dc(0)

V
, (4)

where b = 1/kBT, V is the system volume, q is the number density, C
denotes the set of all attractive sites (all patches and particle center),
a denotes subset of C, sa is the density parameter, which is equal to
the sum of the densities of the particles with all possible subset of
sites c from the set a bonded, i.e

sa =
∑
c⊂a

qc. (5)

Here the reference system is represented by the system with the
following pair potential

Uref (1, 2) = Uhs(r) +
ns∑

ij=1

Upipj (1, 2), (6)

Dc(0) = c(0)−c(0)
ref , where c(0) is the fundamental sum of all possible

irreducible diagrams with field points connected by fref(1, 2) =
exp[−bUref(1, 2)] − 1 bonds and Fpic(1, 2) = [fref (1, 2) + 1]fpic(1, 2)
bonds (where fpic(1, 2) = exp[−bUpic(1, 2)] − 1) and c(0)

ref is the sum
of diagrams with the only bond fref(1, 2) [13]. Each field point carries
the factor sC−a , where a is a subset of bonded sites. Finally for ca we
have [13]:

ca =
∂Dc(0)

∂sC−a
. (7)

Exact expression for Dc(0) contains the infinite sum of diagrams:
to proceed one have to adopt certain approximation. We will follow
Wertheim [12] and utilize here TPT2, retaining only the graphs with a
chain of Fpic-bonds on up to three points. To account for the blocking
effects, which appear due to the patch-patch repulsion, we will omit
the diagrams with double bonds between two particles. In addi-
tion we will assume that the properties of the reference system can
be described using corresponding hard-sphere system. The latter
approximation is expected to be sufficiently accurate, since the major
contribution due to the patch-patch interaction is already taken into
account.

For the model at hand we have:

Dc(0) = Dc(0)
1s + Dc(0)

2s + Dc(0)
2d , (8)

where

Dc(0)
1s = nssC−csC−pI1, (9)

Dc(0)
2s = nssC−c

[
1
2

(ns − 1)sC−csC−p−p + nssC−c−psC−p

]
I2, (10)

Dc(0)
2d =

1
2

n2
s sC−cs

2
C−p J2, (11)

I1 =
∫

d(2)fpc(1, 2)ghs(1, 2), (12)

I2 =
∫

d(2)d(3)fcp(1, 2) fcp(1, 3) (ghs(1, 2, 3) − ghs(1, 2)ghs(1, 3)), (13)

J2 =
∫

d(2)d(3) fcp(1, 2) fcp(1, 3)ghs(1, 2, 3), (14)

ghs(1, 2) and ghs(1, 2, 3) are two- and three-particle hard-sphere
distribution functions and we have used the symmetry of the model
which appears due to equivalence of the patches. Here we omit
the lower indices, which denote the type of the patches and use
the following notation: C − p − p ≡ C − pi − pj (i �= j). Here
the terms Dc(0)

1s and Dc(0)
2s represent contributions to Helmholtz free

energy from the diagrams with both center and patches singly
bonded. These terms are similar to those, which appear in the stan-
dard TPT2 of Wertheim [12]. The term Dc(0)

2d describes contribution
due to doubly bonded center and singly bonded patches. Note that
in the framework of the present version of the TPT2 contribution
from the diagrams with colloidal center bonded more then twice
is neglected. The integrals I1, I2, J2, which appear in the expression
for Dc(0)(Eq. (8)), can be calculated using the scheme developed in
Marshall et al. [14].
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