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A B S T R A C T

The thermal decomposition point for ionic liquids (ILs) is an essential property that imposes an upper oper-
ating limit for many applications. Since the decomposition of ILs can lead to unwanted byproducts, it is
desirable to improve their thermophysical properties and create more application specific compounds. With
a view to rapidly estimate these properties of interest, approaches based on quantitative structure-property
relationship (QSPR) models have been relatively successful but somewhat restricted to small datasets with
limited diversity. Here, we investigate the effectiveness of a wide range of electronic, thermodynamic and
geometrical descriptors derived from semi-empirical PM6 calculations to estimate the thermal decom-
position temperatures of 995 diverse ILs comprising 461 cations and 119 anions. Of the two regression
schemes used: partial least squares and random forests, the latter yielded slightly improved performances
(R2

cv = 0.81, R2
test = 0.77). Analysis based on variable importance indicates that the anion-specific descrip-

tors such as nucleophilicity and size significantly influence the thermal stabilities which are in agreement
with experimental observations.

© 2016 Published by Elsevier B.V.

1. Introduction

Owing to their attractive properties such as negligible vapour
pressure, large liquid range, thermal stability etc., ionic liquids (ILs)
have been used in a number of application areas such as carbon
capture [1], electrolytes in batteries [2], biomass processing [3], fuel
cells [4] and medicine [5] to name a few. Furthermore, by select-
ing suitable combinations of the cations and anions, a vast number
of potential candidate ILs (106–1018) can be produced [6]. However,
the laborious and often expensive synthesis and characterization of
even a small subset of the possible combinations poses significant
challenges. In order to make the search for ILs with specific proper-
ties sufficiently tractable, computational predictive models provide a
viable alternative [7].

The thermophysical properties of ILs are of particular interest for
heat transfer applications that range from low temperature refrig-
eration systems to solar energy collection at high temperatures [8].
Many of these applications require the ILs to be recycled and any
degradation will negatively impact their efficacy. The thermal sta-
bility of the ILs is typically studied using thermogravimetric analysis
(TGA) which yields the onset temperature of decomposition (Td) and
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imposes an upper limit on the liquid range [9,10]. Theoretical and/or
computational methods that can help predict the thermal behaviour
and facilitate safe use would be of great practical interest. Although
ab initio molecular dynamics (MD) [11] and density functional the-
ory (DFT) [12,13] based methods have been used to investigate the
kinetics and mechanisms of thermal degradation, the high compu-
tational cost limits their application. In comparison, the application
of quantitative structure-property relationship (QSPR) models pro-
vide a relatively low-cost and computationally efficient protocol to
screen new candidate ILs. Since these approaches yield a mathemati-
cal/statistical model correlating descriptors derived from the molec-
ular structure with known molecular/material properties [7,14,15],
they may also provide an improved understanding of the phenomena
under investigation.

Thermal stability is seen to be strongly dependent on the struc-
ture of the IL, in particular the coordinating ability of the anion
[10,16]. This knowledge has been used extensively in the develop-
ment of important IL properties such as melting points [17], heats of
fusion [18] and heat capacity [19]. In this work, we investigate the
use of structure-property models to estimate thermal decomposition
temperatures (corresponding to 10% weight loss) of a structurally
diverse dataset of 995 ILs, compiled from various literature sources.
Previous studies have reported regression models based on group
contribution [20,21] schemes, topological indices [22] and three-
dimensional (3D) descriptors [23] for datasets ranging between 150
and 600 datapoints (see Table S1 in the Supplementary material).
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Fig. 1. Prominent cations (top row) and anions (bottom row) found in the dataset.

In addition to a much larger dataset covering more recent literature
and a more diverse set of chemical moieties, here, we make use of
descriptors [24] derived from semi-empirical MOPAC [25] calcula-
tions. In particular, we examine the influence of reactivity indices
that provide information about the molecular interactions that influ-
ence thermal stability [26,27]. Our results show that the models
based on non-linear random forests outperform those based on
linear partial least squares regression.

2. Methods and materials

2.1. Dataset

Experimental thermal decomposition temperatures (Td) for a
diverse set of 995 ILs comprising 461 cations and 119 anions were
compiled from the literature (a primary source was [28]). The promi-
nent cations and anion groups are shown in Fig. 1. The names of
the ILs, the experimental Td and associated references are listed in
Table S2 in the Supplementary material. The temperatures span the
range 350 to 760 K (rounded to the nearest integer) with a major-
ity of the values concentrated between 450 and 700 K (see Fig. F1 in
the Supplementary material). The distribution of the temperatures
summarized by the minimum, median, maximum and the first and
third quartiles are shown as boxplots in Figs. 2 and 3 for the promi-
nent cations (imidazolium, triazolium, amino acids, phosphonium)
and anions (perchlorate, halide, bis(trifluoromethanesulfonyl)amide
(TFSI)) present in the data.

2.2. Descriptors

We have focused mainly on 3D and topographical descriptors that
can be calculated independent of size, as the predictor variables. The
3D structures of the individual cations and anions were subjected to
geometry optimization and force calculations using the PM6 Hamil-
tonian [25]. In a recent study [29], the PM6 geometry optimization
method has been shown to have predictive capabilities comparable
with that of more computationally expensive DFT methods. Vari-
ous quantum chemical and molecular orbital based descriptors such
as the HOMO/LUMO energies, charges, polarizabilities and superde-
localizabilities,vibrational frequency based eigenvalue (EVA) indices
thermodynamic descriptors (entropies, enthalpies), charge partial
surface area (CPSA), property weighted radial distribution func-
tion (RDF), and 3D molecular representations of structure based on
electron diffraction descriptors (3D-MoRSE) descriptors and other
geometrical indices (such as the globularity and weighted holis-
tic invariant molecular descriptors (WHIM)) were calculated using
the open source software KRAKENX [24] (downloadable from www.
krakenminer.com) developed in our group. Table S5 in the Sup-
plementary material provides a description of the variables. The
generated descriptors have been found to be successful in various
applications such as predicting solar power conversion efficiencies,
viscosity, density and pKa [24,30-32]. The descriptors were cal-
culated independently for the cations and anions and interaction
effects were not considered [33]. The descriptor names were prefixed
with “Cation” and “Anion” in order to differentiate between those
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Fig. 2. Boxplot showing the distribution of the Td for prominent cations. The “whiskers” above and below the box indicate the positions of the minimum and maximum. See the
supporting information for details.
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