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In this article, a hard sphere fluid confined between two homocentric cylinders which formed a
bicylindrical pore has been investigated. Our aim is investigation of the effect of an outer cylinder on the
values of wall pressure, interfacial tension, and excess adsorption of fluid at a convex nanocylindrical
wall, inner wall. To investigate this effect, the modified fundamental measure theory (MFMT) used. To
do so at first we presented a general solution for weighted density integrals in cylindrical coordinate
which is applicable for infinite and infinite lengths of cylindrical pore, bicylindrical pore, cylindrical wall,
and even truncated cone. In the second step, the wall pressures, interfacial tensions, and excess adsorp-
tions at a convex nanocylindrical wall are obtained for confined fluids in bicylindrical pores and compared
with those values for bulk fluids. Our results showed that confinement leads to an oscillatory behavior for
wall pressure, interfacial tension, and excess adsorption of the fluid at the wall. The reason for these oscil-
lations lies in structural changes that occur for a fluid as a result of confinement. Variation of the type of
interaction of inner wall with fluid from hard to attractive one can reverse the behavior of interfacial
tension and adsorption versus size. Also in some cases, it changes their signs while the change in the
type of interaction of the outer wall only leads to an increase in amplitudes of the oscillations.
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1. Introduction

Nano-confined fluids and their properties have been the focus of
much research because of the significant role they play in both industri-
al and biological systems [1,2]. Adsorption offluids in nanopores has im-
portant applications in protein extraction, phase separation, and
chromatographic processes [3–5]. Moreover, interfacial tension plays a
remarkable role in pharmaceutical production and plant nutrition.
Certain phenomena such as the capillary rise in plants, ionic transfer
through nanochannels in biological cells, and preparation of monodis-
perse emulsions in industrial processes strongly depend on interfacial
tension which may exhibit different values for different nanopores
[6–8].

It is expectable that the shapes and curvatures of nanopores and
nanowalls should play major roles in determining the values of both
fluid interfacial tension and adsorption. A number of studies have
been conducted to determine the interfacial tension and excess adsorp-
tion of fluids in different geometries [9–12]. Dong Fu [13] investigated
the structure, interfacial tension, and excess adsorption of a Lennard-

Jones fluid confined between two planar walls for different sizes of
slit-like pores. Bryk et al. [14] studied the interfacial tension of a hard
sphere fluid in contact with hard spherical and cylindrical walls for a
wide range of sizes and densities. Detailed investigations have also
been carried out in our previous works on the structure, interfacial ten-
sion, and excess adsorption of a bulk fluid at a convex spherical wall as
well as the effects of the concave and convexwalls of a spherical pore on
the structure of fluids [15,16]. Also, Keshavarzi and Taghizadeh studied
the structure of thefluid around a nanocylindricalwall including convex
and flat walls and the relevant edges [17]. Among the different
nanopores, the nanocylindrical pore is the one receivingmore attention
in theoretical studies due to its geometry which is commonly found in
nature. Moreover, it has foundwide applications in industrial processes
because of the lower friction it causes.

In this work, we will focus on a bicylindrical pore to investigate the
wall pressure, interfacial tension, and excess adsorption of a hard sphere
fluid at a convex cylindrical wall in the presence of another concave cy-
lindrical wall. The presence of the second (concave cylindrical) wall af-
fects the values of the above properties at the convex cylindrical wall. In
our case, the fluid is confined between these two concave and convex
walls which form a bicylindrical pore. Additionally, the fluid used in
this study is taken to be a hard sphere one and the cylindrical wall is
considered as being both a hard and an attractive wall. We will obtain
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and compare the values forwall pressure, interfacial tension, and excess
adsorption for the following twodifferent cases: one is the case of afluid
in a nanobicylindrical pore for which the radius of the outer cylinder is
infinity (i.e., a bulk fluid at the contact of a convex cylindrical wall), and
the second being the case of a fluid in a nanobicylindrical pore forwhich
the radius of the outer cylinder, Rb, is in the order of themolecular diam-
eter (i.e., a confined fluid at the contact of the inner cylindrical wall with
a radius identical to that of the first case). It should be noted that the dif-
ferences observed among the properties thus obtained are directly re-
lated to the confinement effects since the inner cylinder will be the
same for both cases.

Thanks to its higher accuracy, the modified fundamental measure
theory (MFMT), which is the most successful version of the DFT ap-
proach, is used in this study to determine the structure of the fluid in
the bicylindrical pore. Bryk and co-workers [18] studied the adsorption
and phase behavior of fluids in pores confined between two uniaxial
cylinders; however, the radius of the inner cylinder in their work was
larger than themolecular size. To overcome this problem, Tarazona pro-
posed the cavity fundamentalmeasure theory (CFMT) based on his def-
inition of a new free energy density proposed for this kind of nanopore
[19,20]. Gonzalez and co-workers used Fourier technique to solve the
weighted densities in the original FMTof Rosenfeld (OFMT) for cylindri-
cal and spherical pores [21]. Kong et al. applied a solution for weighted
density integrals in a narrow cylinder with infinity length [22].
Malijevsky solved the integration of the weighted densities in an effec-
tive one-fold numerical integration that ends up with elliptic functions
[23]. Recently, a solution for spherical geometries was presented by
Keshavarzi and Helmi [24]. In this study, wewill initially present the so-
lution of weighted density integrals in cylindrical coordinate for a cylin-
drical geometry before we proceed to deal with our main objective of
investigating the effects of fluid confining on contact density, interfacial
tension, and adsorption of fluid around a cylindrical wall. Although
there are some reports for weighted density integrals in MFMT in
the literature, our solution has some advantages. We present a gen-
eral solution which is applicable for cylindrical geometries with
finite or infinite lengths including cylindrical pores, bicylindrical
pores, cylindrical walls, and even for truncated cone. While some
of the reported solution are only applicable for their studied case.
It will also be shown that this solution is easier than the two Fourier
and Tarazona techniques and also using elliptic functions so far pre-
sented elsewhere.

The rest of the paper is organized as follows. Section 2 presents a
brief review of the MFMT. The solution of weighted density integrals
for cylindrical geometrieswill be presented in Section 3. Section 4 inves-
tigates the effects of confinement on the values ofwall pressure, interfa-
cial tension, and excess adsorption of a fluid at a cylindrical wall. Finally,
conclusions will be provided in Section 5.

2. Modified fundamental measure theory (MFMT)

The grand canonical free energy,Ω[ρ(r)], of an inhomogeneous fluid
is a functional of the one-body distribution function, ρ(r), which can be
defined as [25]:

Ω ρ rð Þ½ � ¼ F int ρ rð Þ½ � þ ∫drρ rð Þ Vext rð Þ−μ½ � ð1Þ

where,Vext (r) is the external potential, μ is the chemical potential of the
inhomogeneousfluid, and Fint [ρ(r)] is the intrinsic Helmholtz free ener-
gy. The functional Fint [ρ(r)] is expressed as:

F int ρ rð Þ½ � ¼ F id ρ rð Þ½ � þ Fex ρ rð Þ½ � ð2Þ

where, Fex [ρ(r)] and Fid [ρ(r)] are excess and ideal contributions to the
intrinsic Helmholtz free energy, respectively. The ideal contribution is

given by the exact equation as:

F id ρ rð Þ½ � ¼ kT
Z

drρ rð Þ ln ρ rð ÞΛ3
� �

−1
h i

ð3Þ

where, k is the Boltzmann constant, T is absolute temperature, and Λ is
the de Broglie wavelength. According to MFMT for a hard sphere fluid,
the excess part of the Helmholtz free energy is expressed as follows:

Fex ρ rð Þ½ � ¼ kT
Z

dr Φhs nα rð Þð Þ½ � ð4Þ

In the above equation,Φhs (nα (r)) is the Helmholtz free energy den-
sity of a hard sphere fluid. The term Φhs (nα (r)) is divided up into two
scalar and vector parts as follows [26,27]:

ΦS
hs ¼ −n0 ln 1−n3ð Þ þ n1n2

1−n3

þ 1
36πn2

3

ln 1−n3ð Þ þ 1

36πn3 1−n3ð Þ2
" #

n3
2 ð5Þ

ΦV
hs ¼ −

nv1nv2

1−n3
−

1
12πn2

3

ln 1−n3ð Þ þ 1

12πn3 1−n3ð Þ2
" #

n2 nv2nv2ð Þ ð6Þ

where, nα (r) is the weighted density defined as:

nα rð Þ ¼
Z

dr0ρ r0ð Þwα r−r0ð Þ ð7Þ

where,wα is theweight function that involves two vector functions,wv
α,

and four scalar functions, wα, as follows:

w3 rð Þ ¼ θ
σ
2
−r

� �
w2 rð Þ ¼ 2πσw1 ¼ πσ2w0 ¼ δ

σ
2
−r

� �
w2

v rð Þ ¼ 2πσw1
v ¼ r

rj j δ
σ
2
−r

� � ð8Þ

where, θ(r) is theHeaviside step function, δ(r) represents theDirac delta
function, and r is the distance between two points in the system. By
minimizing the grand canonical potential, the equilibrium local density
of confined fluids obtains [28]:

ρ rð Þ ¼ ρb exp βμhs
ex−∫dr

0
∑α

∂Φ
∂nα

wα r−r
0

� �
−βVext rð Þ

� �
ð9Þ

In Eq. (9), μexhs is the hard sphere chemical potential obtained via
Mansoori–Carnahan–Starling–Laland (MCSL) equation of state for the
pure hard sphere fluid as [29]:

βμhs
ex ¼ η 8−9ηþ 3η2

� �
1−ηð Þ3

ð10Þ

in which, η is the packing fraction whose value is equal to πρbσ3/6. Ac-
cording to the above equations, the grand potential, Ω, is:

Ω ¼ kT
Z

Φhs nα rð Þð Þdr þ
Z

Vext rð Þρ rð Þdr

þ kT
Z

ρ rð Þlnρ rð Þdr−kT
Z

ρ rð Þ 1þ lnρb þ
μb
ex

kT

� 	
dr ð11Þ

where, μexb is the excess chemical potential of the bulk fluid. The external
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