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Vaporization enthalpy is an essential property in various areas of science and engineering applications such as
optimizing the transportation processes, designing the oil and gas production and processing facilities, and
heatflux calculations. Thiswork aims to develop an intelligent technique, namely Radial Basis Function (RBF) ap-
proach to predict the vaporization enthalpy of petroleum fractions and pure hydrocarbons. The model was
coupled with an optimization algorithm namely Genetic Algorithm (GA) to determine the tuning parameters
of RBF model. The model performance was evaluated through various graphical and statistical approaches. Re-
sults of the developed GA-RBF model were also compared with other literature correlations and intelligent
models. It was found that the proposed GA-RBF model exhibits reliable results with acceptable accuracy for
the prediction of experimental vaporization enthalpy data. In addition, results show that themodel outperforms
other literature models and correlations and exhibits better performance for prediction of experimental data.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Vaporization enthalpy is defined as the difference between en-
thalpies of vapor and liquid phases at the same temperature and pres-
sure. Vaporization enthalpy (ΔHvap) is the amount of energy, which is
required to transform a liquid phase material into the vapor phase at
the boiling temperature [1]. Consequently, the vaporization enthalpy
is utilized in many chemical disciplines and in oil and gas industries as
well. From a thermodynamic standpoint, vaporization enthalpies can
be utilized in processing and transportation facilities, which are aimed
to optimize and design oil and gas production in addition to heat flux
calculations. Moreover, they can be applied in order to predict some
physical phenomena such as the solubility parameters of hydrocarbons
[2]. The vaporization enthalpy of pure components, especially hydrocar-
bons, is a significant thermodynamic property that depends upon
specific gravity (SG), normal boiling point temperature (Tb), andmolec-
ular weight (Mw) amongst thermodynamic relationships [3].

From both experimental and theoretical points of view, the vapori-
zation enthalpy is of great importance due to its use in engineering op-
timization anddesign. Therefore, experimental techniques, correlations,
and estimationmodels have been developed to be helpful for petroleum
and chemical engineers in thermodynamic calculations [4]. In this re-
gard, Vetere [5,6] introduced two empirical correlations to calculate va-
porization enthalpy by two variables, which are molecular weight and
normal boiling temperature. An empirical correlation to predict the va-
porization enthalpy as a function of Tb and SGwas consequence of Riazi
andDaubert [7] work. Correlations of Vetere [5,6] and Riazi andDaubert
[7] illustrate a rough error of 7%.

A simple correlation was developed by Mohammadi and Richon [2]
in order to calculate vaporization enthalpy. It is just a function of Tb and
SG. Additionally, it is able to calculate the vaporization enthalpies of
pure hydrocarbon components and petroleum fractions. Moreover,
they developed a classical Artificial Neural Network (ANN) tool to com-
pare the results obtained by their empirical correlation. The resultswere
indicative of the fact that empirical correlations and the ANNmodel are
in compliance with experimental values. Other correlations such as
Gopinathan and Saraf [8], Trouton's rule [4], Kistiakowsky rule [4] are
also reported for prediction of vaporization enthalpy. The Gopinathan
and Saraf [8] correlation is based on Mw, Tb and SG while the Trouton's
and Kistiakowsky rules [4] are just based on Tb. Parhizgar et al. [1]
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proposed an empirical approach to determine vaporization enthalpies
of pure hydrocarbon components and petroleum fractions by genetic
programming that is a function of Tb and SG. Their results illustrate
that their correlation is able to calculate the vaporization enthalpy of
pure hydrocarbon components and petroleum fractions that has an av-
erage absolute relative deviation (AARD%) of almost 1.35%. Kamari et al.
[3] proposed an intelligentmodel based on CSA-LSSVM for prediction of
vaporization enthalpy. They also compared their results with the
models and correlations developed by Mohammadi and Richon [2],
Fang et al. [4], and Parhizgar et al. [1]. The CSA-LSSVMmodel was supe-
rior to other literature models and correlations.

Majority of methods available to calculate vaporization enthalpy
have been based on laboratory obtained data in the case of hydrocarbon
components. Therefore, they may not be precise in the case of petro-
leum fluids [2]. Additionally, in order to calculate vaporization enthalpy
by conventional thermodynamicmethods,many adjustable parameters
are normally required. On the other hand, there are many weaknesses
in existing thermodynamic models to calculate thermo-physical prop-
erties. These weaknesses include their lack for generalization of results
becausemost of thesemodels are applicable in specific domains and are
not universalmodels and also the fact that the results of thermodynam-
icmodels are limited tomixtures and systemswhich they have been de-
signed and adjusted for. In other words these models require several
tuning and adjustable variables which their values should be optimized
according to experimental data within limited and narrow range of
thermodynamic conditions. These thermodynamic approaches need ac-
curate and precise characterization of reservoir fluids and petroleum
fractions as well. Moreover, thermodynamic models need dependable
multiphase-multicomponent flash calculation algorithms and accurate
properties (enthalpy, saturation temperature, etc). Some of these
models may also result in convergence problems. Thus, there is a need
for rapid, yet robust, and predictive approaches for determining the va-
porization enthalpy for both petroleum fractions and hydrocarbon com-
ponents. To achieve this objective, some smart approaches such as Least
Square Support Vector Machine (LSSVM), Artificial Neural Network
(ANN), Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
etc., have been utilized in recent years for solving regression, and classi-
fication problems [3,9–13].

This study highlights the application of a dependable intelligent
model namely Radial Basis FunctionNeural Network (RBF-NN) to deter-
mine the vaporization enthalpy of pure hydrocarbon components and
petroleum fractions as a function of Mw, SG and Tb using experimental
data.

2. Radial Basis Function Neural Networks (RBF-NN)

Artificial Neural Networks (ANNs) are intelligent approaches,
which own various advantages including their learning ability,
which are capable to learn from previous processing operations to
enhance their accuracy and high adaption capability, which easily
adjust their performance with the environmental changes [14]. The
main advantage of ANNs is that they can handle and control large
scale problems, which require processing of complex and large
amount of data points. ANNs have special structures comprising of
various interconnected processing units called neurons. The units
are distributed in their structure in a manner that they are located
in specific layers with linking connections [9,14]. Two known types
of ANNs which are similar in their performance but different in
data processing are Multilayer Perceptron Neural Networks (MLP-
NN) and Radial Basis Function Neural Networks (RBF-NNs) [14].
The structure of both RBF-NNs and MLP-ANNs consists of three
layers named input, hidden, and output layers. The difference
is that the MLP-ANN can have more than one hidden layer but the
RBF-NN just holds one fixed hidden layer in its structure, which is
one of the superiorities of RBF-NN over MLP-NN [15]. Owing to
their simpler structure, it is easier to design and construct RBF-

NNs. In addition the RBF-NN usually provides higher generalization
ability and more efficient instant learning capability compared to
MLP-NN. Moreover, RBF-NNs exhibit better responses to unseen
testing patterns, which are used for general verification of model
[16]. The simpler structure of RFB-NNs leads to faster training pro-
cess of them [17]. These advantages of RBF-NNs position them as
popular alternatives over MLP-NNs to be used in modeling purposes.
The concept of RBF-NNs originates from the problem of efficient in-
terpolation of a number of data points in a multidimensional domain
[17]. RBF-NNs have a structure identical to structure of regulariza-
tion networks. Three main characteristics of these networks are as
follows [18,19]:

1. If sufficient number of data points available, the network will
be capable to predict anymulti-variable continuous function on a de-
sired domain.

2. It provides the best possible solutions for the problem under consid-
eration because it uses a cost function to control the level of smooth-
ness of the problem.

3. The un-known parameters have linear nature, which brings the net-
work to provide the best approximation feature.

The hidden layer of RBF-NNs contains various nodes in which
each node holds a specific function named Radial Basis Function
(RBF) denoted by ϕ(r). The input layer is responsible to deliver the
input parameters as an input vector to hidden layer. The hidden
layer performs a nonlinear transformation on this vector. The input
of RBF is the vector distance between the weights terms of RBF and
the product of input vector and its related biases. The output layer
linearly maps the nonlinearity into a new domain. The values of
weight terms can be optimized by utilizing the linear optimization
approaches in the light of minimizing a predefined cost function,
which is normally the Mean Square Error (MSE) between target
values and model predictions [19,20]. The most important differ-
ences between MLP and RBF-NNs are as follows [16]:

1. The structure of MLP-NNs hasmore complexities compared to struc-
ture of RBF-NNs.

2. Due to the fact that RBF-NNs have just one fixed hidden layer the
learning and training of them is simpler than MLP-NNs.

3. RBF-NNs are localized based networks in which the network output
is a result of certain units in specific local receptive areas, however,
MLP-NNs are general predictive tools such that the output is deter-
mined by contribution of all neurons.

Further details about the performance of RBF-NNs are found in open
literature [9,15].

3. Results and discussion

3.1. Data acquisition

There are basically two empirical approaches to determine the
value of vaporization enthalpy. The first approach correlates the vapor-
ization enthalpy with the normal boiling point and critical properties
of substance [21]. Another approach uses molecular weight, specific
gravity, and normal boiling point temperature to correlate the

Table 1
Input and output parameters utilized in this work.

Parameter Maximum Minimum Average Standard deviation

ΔHvap (kJ/mol) 80.1 19.0 42.1 14.46
Tb (K) 722.8 231.1 451.9 111.25
Mw (g/mol) 422.8 44.1 160.2 84.5
SG 0.8 0.8 0.7 0.07
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