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In this paper, a perturbation method is introduced to study the electroosmotic flow (EOF) in a microtube with
slightly corrugated wall. The corrugation of the wall is described as periodic sinusoidal wave with small ampli-
tude. Based on linearized Poisson–Boltzmann equation and the Cauchy momentum equation, the perturbation
solutions for velocity and volume flow rate are obtained. The influences of the amplitude δ, the wave number
λ, the nondimensional electrokinetic width K and the nondimensional pressure gradient G on the velocity and
flow rate are analyzed graphically and discussed in detail. The results show that the flow rate Q of the EOF
through a corrugated channel tends to the flow rate Q0 of the EOF through a smooth channel when amplitude
δ tends to zero, but the flow rate Q is always smaller than the flow rate Q0 in the smooth channel. The flow re-
tardation of the roughness on the flow rate of the EOF always increases with the augment of the nondimensional
electrokinetic width K.

© 2016 Elsevier B.V. All rights reserved.
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Nomenclature
a mean radius of channel, m
e elementary charge = 1.602 × 10−19 C
E0 electric field strength, V m−1

G normalized axial pressure gradient = −a2/(μUeo)∂p/∂z, —
K dimensionless electrokinetic width = κa, —
kb Boltzmann constant = 1.38 × 10−23 J K−1

n0 ion density of bulk liquid, m−3

P pressure, Pa
Q dimensionless flow rate in rough channel, —
Q0 dimensionless flow rate in smooth channel, —
R, θ, Z cylindrical polar coordinate components, m, —, m
r, θ, z dimensionless cylindrical polar coordinate components, —
T absolute temperature, K
Ueo Helmholtz–Smoluchowski electroosmotic velocity=−εζE0/μ,

m s−1

w dimensionless axial velocity, —
zν valence of ion,—

Greek symbols
δ ratio of the corrugation amplitude to the mean radius of the

channel, —
ε dielectric constant, C V−1 m−1

ζ zeta potential, V
κ inverse Debye length, m−1

λ wavenumber of wall corrugations, —
μ dynamic viscosity, Pa ∙s
ρe net volumetric charge density, C m−3

ψ electric potential, V
φ dimensionless electric potential, —

1. Introduction

Microfluidic devices have become important due to its potential ap-
plications in physical and biochemical analysis [1,2]. Based on the actua-
tion mechanism, various micropumps [3] such as electrohydrodynamic
micropumps, electroosmotic micropumps, magnetohydrodynamic
pumps, centrifugal pumps, reciprocating displacement micropumps
have been developed. This paper presents the electroosmotic flow
(EOF) in a microtube with slightly corrugated wall. Electroosmotic
micropump is one of the important microfluidic systems which can
transport fluids through microchannels without mechanical moving
parts. The principle of electroosmotic flow is as follows. Generally,
most solid surfaces will acquire a negative electric charge when brought
into contactwith a fluid containing dissociated salts. The charged surface
will be able to influence the distribution of nearby ions in the solution
and the outcome is the formation of an electric double layer (EDL). The
EDL is a region close to the charged surface in which there is an excess
of counterions over co-ions to neutralize the surface charge. When an
axial electric field is applied, these ions will move. Due to viscous drag,
the liquid is drawn by the ions and therefore flows through the channel.
This kind offlow is known as EOF. The EOF of Newtonianfluids in various
smooth microchannels has been studied theoretically, numerically and
experimentally, by many researchers [4–19]. In addition, the flow and
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heat transfer of nanofluid andmicropolarfluid have been investigated by
Ganji et al. [20–25].

In practice, there are many roughnesses on surfaces of real channel
walls, because the fabrication process or the adsorption of other species
such as macromolecules can cause roughnesses on the wall of channel.
A number of researchers studied the influence of wall roughness on
laminar flow since 1970s. Wang [26] studied the effect of roughness
on stokes flow between corrugated plates. The effects of surface wavy
roughness on the fluid flow inside annuli with microfabricated solid
walls were investigated by Chu [27]. Malevich et al. [28] theoretically
studied three dimensional (3D) Couette flows between a plane and a
wavy wall. Ng and Wang [29], by using the perturbation analysis
method, analyzed the effect of corrugations on the Darcy–Brinkman
flow through a porous channel with slightly corrugated walls. Qiao
[30] investigated the effects of molecular level surface roughness on
the EDL and the EOF by using molecular dynamics simulations. Hu
et al. [31] studied theoretically and experimentally the EOF in slit
microchannels with rectangular 3D prismatic elements fabricated on
the bottom channel wall. Kang and Suh [32] investigated numerically
two-dimensional electroosmoticflows in amicrochannelwith dielectric
walls of rectangle-waved surface roughness. The effects of roughness
element height and density on the EOF behavior are investigated by
Yang and Liu [33]. Yau et al. [34] investigated the flow characteristics
of EOF in a microchannel with complex wavy surfaces by the general
method of coordinate transformation. Shu et al. [35] studied EOF
through a microparallel channel with corrugated wavy walls under
the Debye–Hückel approximation. They investigated the effects of
corrugations on the EOF by performing perturbation analysis for
small-amplitude corrugations as well as by applying the Ritz method
and finite difference method for corrugations up to an amplitude of
0.5. Buren et al. [36] utilized perturbation method to investigate the
electromagnetohydrodynamic (EMHD) flow in a microparallel channel
with slightly corrugated walls. The 2D EMHD flow in a micro-parallel
channel with slightly transverse corrugated walls is investigated
by Buren and Jian [37]. In addition, Sheikholeslami et al. [38–40] numer-
ically studied the effects of electric filed on the heat transfer and flow
characteristic of a nanofluid in complex geometries.

The present article is an extension of reference [35]. In Ref. [35], the
EOF through a corrugated parallel microchannel is studied when the
zeta potentials on the upper and lower walls equal an identical constant
and the cross-sectiondoes not change along theflowdirection. However,
there has been no published work about the EOF through a microtube
with corrugatedwalls. The purpose of the present article is to investigate
the EOF through amicrotubewith sinusoidally corrugatedwalls. The rest
of the paper is presented as follows. In the second section of this article,
the governing equations of EOF subjected to wavy boundary conditions
are derived, and the approximate solutions for the electric potential,
the velocity and the volume flow rate are obtained by using the
perturbation method. In the third section, the influences of dimensional
parameters on the EOF through a corrugated microtube are discussed in
detail. Finally, conclusions are presented in the forth section.

2. Formulation of the problem

The steady EOF of an incompressible, viscous and electrolyte
conducting Newtonian fluid in a microtube with sinusoidally wavy
wall is considered. The geometry of problem and selection of coordinate
system are shown in Fig. 1. The mean radius of the microtube is a.
A cylindrical polar coordinate system (R, θ, Z) is introduced, where
Z-axis is flow direction. The wavy wall is described by

Rw ¼ a 1þ δ sin λθð Þ½ �; ð1Þ

where δ is the ratio of the corrugation amplitude to the mean radius of
the channel andλ is thewavenumber of the corrugations. The small am-
plitude δ will be used as the perturbation parameter for the problems

described below. The advantage of perturbation method is that the
governing equations and boundary conditions can be solved analytically
and approximately. The flow is driven by axial DC electric field of
strength E0 and pressure gradient. According to the EDL theory, the re-
lationship between the electric potential ψ(R,θ) and the net volumetric
charge density ρe(R,θ) can be described by Poisson equation

∇2ψ ¼ −
ρe

ε
: ð2Þ

Based on the assumption of local thermodynamic equilibrium [41],
the net volumetric charge density ρe of symmetric electrolyte is
expressed as

ρe ¼ −2n0zve sinh
zveψ
kbT

; ð3Þ

where ε is the dielectric constant of the electrolyte liquid, zν is the va-
lence, n0 is the ion density of bulk liquid, kb is the Boltzmann constant,
e is the electron charge, and T is absolute temperature.

The term sinh(zveψ/(kbT)) can be approximated by zveψ/(kbT) when
ψ is small enough. This linearization is known as the Debye–Hückel ap-
proximation. Substituting this approximation to the Poisson–Boltzmann
equation, Eq. (2) can be written as

∇2ψ ¼ κ2ψ; ð4Þ

where κ = zve(2n0/εkbT)1/2 is the Debye–Hückel parameter and 1/κ
represents the thickness of EDL. The relevant boundary conditions are
given as

ψ R; θð Þ ¼ ζ at R ¼ Rw; ð5aÞ

∂ψ R; θð Þ
∂R

¼ 0 at R ¼ 0; ð5bÞ

where the zeta potential ζ on the wall is constant [35].
The continuity, momentum balance equations can be expressed in

the dimensional form as

∇ � U!¼ 0; ð6Þ

ρ
∂U
∂T

þ U
!� ∇
� �

U
!

 !
¼ −∇P þ μ∇2U

!þ ρe R; θð ÞE0 e!Z ; ð7Þ

where P is the pressure of the liquid, μ is the dynamic viscosity. The
boundary conditions at the wall surface and the centerline of channel
are given as follows:

U
!

R; θð Þ ¼ 0atR ¼ Rw; ð8aÞ

Fig. 1. Sketch of EOF through a circular micropipe with sinusoidal wavy microchannel.
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