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The aim of this communication is to explore the steady three-dimensional boundary layer flow and heat transfer
characteristics to Burgers fluid utilizing Cattaneo-Christov heat flux model. This model is the generalization of
classical Fourier's law that considers the fascinating aspect of thermal relaxation time. The governing boundary
layer equations of motion and energy are reduced to a set of three ordinary differential equations by implemen-
tation of suitable transformations which are then solved analytically by utilizing the homotpy analysis method
(HAM). The effects of the thermal relaxation time β and the ratio of stretching rates parameter α on the temper-
ature field is analyzed and presented graphically. It is observed that the temperature distribution is significantly
affected with varying values of the thermal relaxation time β.
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1. Introduction

A standout amongst the best models in continuum physics is the
classical Fourier's [1] heat conduction it is utilized for the description
of heat transfer mechanism in different correlated circumstances. How-
ever, it has one ofmajor limitation that it yields a parabolic energy equa-
tion for temperature field and consequently it contradicts with the
principle of causality. To conquer this difficulty Cattaneo [2] added a
thermal relaxation time in the classical Fourier's-law of heat conduction
which allows the transport of heat via propagation of thermal waves
with finite speed. Such sort of heat transportation has exciting practical
applications that span from nanofluid flows to the modeling of skin
burn injury. After that Christov [3] modified the Cattaneo law by the
time derivative in Maxwell-Cattaneo's model with the Oldroyd's

upper-convected derivative in order to preserve the material-invariant
formulation. Several authors including Straughan [4] studied
Cattaneo-Christov model with thermal convection. Ciarletta and
Straughan [5] analyzed the uniqueness of the solutions for the
Cattaneo-Christov equations. Tibullo and Zampoli [6] provided the
uniqueness of Cattaneo-Christov heat flux model for flow of incom-
pressible fluids. Han et al. [7] investigated boundary layer stretched
flow of a Maxwell fluid with Cattaneo-Christov heat flux model. Impact
of Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with ho-
mogeneous-heterogeneous reactions is studied by Hayat et al. [8] Effec-
tiveness of Cattaneo–Christov heat flux model in flow of variable
thermal conductivity fluid over a variable thicked surface is addressed
by Hayat et al. [9]. Abbasi and Shehzad [10] examined the heat transfer
analysis for three-dimensional flow of Maxwell fluid with Cattaneo-
Christov heat flux model. Hayat et al. [11] investigated the stagnation
point flow with Cattaneo-Christov heat flux and homogeneous-hetero-
geneous reactions. Waqas et al. [12] addressed the impact of Cattaneo-
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Christov heat flux model for flow of variable thermal conductivity gen-
eralizedBurgersfluid. Hayat et al. [13] discussed the impact of Cattaneo-
Christov heat flux model on Jeffrey fluid flow with homogeneous-het-
erogeneous reaction. Hayat et al. [14] reported the three-dimensional
rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model.

There is consistently increasing enthusiasm of current researchers in
flows of non-Newtonian fluids because of their broad applications in in-
dustry and engineering. However, the fluid motion of non-Newtonian
fluids is much more complicated and subtle in comparison with that
of the Newtonian fluids. The non-Newtonian fluids are divided into
three categories namely; differential, rate, and integral types. Amongst
the non-Newtonian fluids, the rate type fluids are those which take
into account the elastic and memory effects. The Burgers fluid model

is a subclass of rate type fluids. This model has been successfully used
to describe the motion of the earth's mantle. The Burgers model is the
preferred model to depict the response of asphalt and asphalt concrete
[15] aswell as used tomodel the propagation of seismicwaves in the in-
terior of the earth [16]. Some fascinating studies involving Burgers fluid
can be found in Refs. [17–23].

The primary goal of present analysis is to explore the rheological
characteristics of three-dimensional boundary layer flow of Burgers
fluid using Cattaneo-Christov heat flux model due to a bidirectional
stretching sheet. The arising two-point boundary value problem treated
analytically by the homotopy analysis method (HAM) [24–27] sug-
gested by Liao [28]. Moreover, the effects of various controlling param-
eters are analyzed graphically and discussed in details.

2. Constitutive expression and equations

Consider the steady three-dimensional forced convection boundary layer flow of Burgers fluid over a bidirectional stretching surface. The sheet
coincides with the plane z=0 and the flow takes place in the domain zN0. Heat transfer analysis is taken into account in the presence of Cattaneo-
Christov heat flux model. The ambient fluid temperature is taken T∞, while the surface temperature is maintained at a certain value of Tw such that
TwNT∞. The governing equations for flow and heat transfer of Burgers fluid are as follows:

divV ¼ 0; ð1Þ

ρ V � ∇ð ÞV ¼ −∇pþ ∇�S; ð2Þ

ρcp V � ∇ð ÞT ¼ ∇ � q; ð3Þ

1þ λ1
D
Dt

þ λ2
D2

Dt2

 !
S ¼ μ 1þ λ3

D
Dt

� �
A1; ð4Þ

qþλ
∂q
∂t

þ V � ∇q−q � ∇Vþ ∇ � Vð Þq
� �

¼ −k∇T; ð5Þ

in which V denotes the velocity vector, T the temperature of the fluid, ρ the fluid density, p the pressure, cp the specific heat of fluid at constant tem-
perature. Furthermore, S the extra stress tensor, q the heat flux,A1 ¼ ð∇VÞ þ ð∇VÞT the first Rivlin-Ericksen tensor, μ the dynamic viscosity, λ1 and λ3
(≤λ1) the relaxation and retardation times, respectively, λ2 (bλ1λ3) the material parameter of the Burgers fluid, k the thermal conductivity of the
fluid, λ the thermal relaxation time and D

Dt

Dai
Dt

¼ ∂ai
∂t

þ urai;r−ui;rai: ð6Þ

For a three-dimensional flow, with velocity V=[u(x,y,z),v(x,y,z),w(x,y,z)], temperature T=T(x,y,z) and stress S=S(x,y,z) fields, we obtain the
following boundary layer equations. By utilizing the standard boundary layer approximations Eqs. (1)-(5) give

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ 0; ð7Þ

Fig. 1. Geometry of the problem.
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