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Molecular dynamics (MD) simulations have been performed on sodium chloride solutions in water-methanol
mixtures under ambient conditions with methanol mole fractions (xm) ranging from 0.09 to 0.87. MD simula-
tions are performed with the flexible SPC water model and the flexible six-site model for methanol. The ions
are modeled as charged Lennard–Jones spheres. The structural properties of the solutions are discussed on the
basis of radial distribution functions. A chain cluster of methanol is predominant in the mixture where xm ex-
ceeds 0.7. The number of methanol molecules are higher than water molecules in the first coordination shell of
sodium and chloride ions beyond xm = 0.5 and 0.48 respectively. With increasing xm, the diffusion coefficients
for water (DH2O) and for methanol (DCH3OH) initially decrease. From xm = 0.29 DCH3OH increases while DH2O

rises only from about 0.7. The two diffusion coefficients are equal at xm = 0.8. The deduced first and second
reorientational correlation times for the O\\H and the dipolemoment vectors for water speed upwith increasing
xm. Through the τ1/τ2 ratio, the reorientational motion of water molecules can be entirely ascribed to a jump.
O\\H methanol vector reorientational occurs by a mechanism similar to that of water.

© 2016 Published by Elsevier B.V.

1. Introduction

The molecular structure and dynamics of Hydrogen-bonded net-
works are of fundamental importance across a wide range of scientific
disciplines. Water molecules are associated together in an extensive
three dimensional networks by Hydrogen-bonds. In addition, water is
one of the most common polar solvents in synthetic chemistry. Hydro-
gen-bonding interactions also exist in other classes of chemical com-
pounds leading to linear chains or cyclic associations of molecules,
alcohols or carboxylic acids. For example, methanol is the most simple
promising candidate among alcohol series forming hydrogen-bonded
networks. In their binary mixture methanol and water are Hydrogen-
bonding liquids, they are incompletely mixed at the microscopic scale.

Aqueous alcohol solutions are widely used as a solvent for chemical
reaction and various analytical techniques such as solvent extraction
and chromatography [1]. Alcohol-water binary mixtures have been
studied extensively over the years in order to correlate the solution
structurewith the observed anomaly in several thermodynamic proper-
ties of these mixtures. Neutron diffraction data on a 1:9 M ratio metha-
nol-water confirm the existence of water molecules in the shell around
carbon, forming a disordered cage in which they retain the tetrahedral
local coordination found in pure water [2]. Takamuku et al. [3] showed
that the tetrahedral structure of water changes moderately changing

into hydrogen-bonded chains of methanol molecules at mole fraction
of methanol at about 0.3. In methanol-richmixtures, short water chains
and longer methanol chains build up the hydrogen-bonded clusters in
the system [4,5]. Neutron diffraction with hydrogen/deuterium isotope
substitution in dilute aqueousmethanol solution (1:19M ratio) showed
a direct evidence of methanol association with N80% of the methanol
molecules in clusters of 3 to 8 molecules [6]. Car-Parrinello molecular
dynamics simulations have been performed on Li+ and Cl− in fully deu-
terated liquid methanol. It has been found that the lithium cation has a
stable tetrahedral coordination whereas the chloride anion presents an
average coordination number of 3.56 [7]. MD simulation for water-
methanol mixture has revealed that mobility of water and methanol
molecules is minimal at intermediate alcohol concentrations [8].

In the case of the orientational correlation times, earlier theoretical
and experimental studies revealed that the different molecular groups
in methanol have different relaxation times. For example second orien-
tational correlation times of liquidmethanol are 0.45 ps for C–D vectors
[9], 3.7 , 5, 8.09 ps for the O\\H vector [9–11] and 1.6 ps for dipole mo-
ment [8]. Our previous study shows that oreientational correlation
times for all water vectors in aqueous NaCl solutions increase with in-
creasing ion concentrations [12].

Water-methanol mixture has been studied for a very long time.
However, to our knowledge, systematic studies of these solutions of
NaCl solutions in water-methanol mixture through the entire range of
methanol molar fraction are still scarce. Therefore, the objective of this
work is to give more insight into their structural and dynamical
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properties. The rest of the paper is organized as follows: in the first sec-
tion we present the simulation methodology. In Section 2, we discuss
our results in terms of radial distribution functions, self-diffusion coeffi-
cient, and orientational time correlations. Finally, our conclusions are
given in Section 3.

2. Simulation details

The molecular dynamics formalism was described elsewhere [13].
Only a brief outline will be given here. The electrostatic and Lennard-
Jones interaction energy between twomolecules is calculated according
to Eq. (1):
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where qi denotes the charge on the ith atom and rij is the distance be-
tween the ith and jth atom; σij and εij are the corresponding constants
of the Lennard-Jones potential. The values of the potential parameters
qi, σi, and εi for all particles are summarized in Table 1 [14–16]. A
cubic box of 250 solvent molecules (water, methanol) and 6 ions of so-
dium and chloride is chosen and periodic boundary conditions with
minimum image convention was used. The initial configurations are
obtained by a random displacement of the particles in the box. The
Lorentz-Berthelot combining rules [17] are used to describe the cross-
interactions and the long-range Coulomb forces are calculated
using the Ewald summation method [18]. The convergence parameter
is α ¼ 5:36

L and the maximum k in the reciprocal space is such that
kmax

2≤27. The non-Coulomb short range interactions were truncated
using a spherical cut-off distance equal to the half of the cell length.
The weak coupling scheme according to Berendsen et al. [19] is applied.

3. Results and discussion

A standard method for studying the structure of solution is to calcu-
late the radial distribution functions gij(r) [20] for the various atom-
atom pairs. Another characteristic is the coordination number (nij)
which defines the mean number of particles (j) in a volume defined
by two concentric spheres of radii r1 and r2 centered on a particle i.

nij ¼ 4πρ j

Z r2

r1
gij rð Þr2dr ð2Þ

The radial distribution functions (RDFs) for the Ow
…Om, Ow

…Hm and
Om
…Hw pairs (Ow, Om, Hm and Hw denote oxygen water, oxygen metha-

nol, hydrogen methanol of hydroxyl group and hydrogen water,

Table 1
Values of Lennard-Jones and electrostatic interaction potentials parameters.

Intermolecular interactions

Atom q/e σ (Å) ε(kJ/mol)

Ow −0.820 3.1656 0.650
Hw 0.410 0.000 0.000
Om −0.683 3.120 0.170
Cm 0.145 3.500 0.066
Hm(C) 0.040 2.500 0.030
Hm(O) 0.418 0.000 0.000
Na 1 2.35 0.544
Cl −1 4.40 0.419

Fig. 1. (A) Theoxygenwater-oxygenmethanol, (B) oxygenwater-hydrogenmethanol, (C)
oxygen methanol-hydrogen water, radial distribution functions for aqueous NaCl
solutions in water-methanol mixtures for different compositions.

Fig. 2. (A) The oxygen water-oxygen water, (B) oxygen water-hydrogen water, (C)
hydrogen water-hydrogen water, radial distribution functions for aqueous NaCl
solutions in water-methanol mixtures for different compositions.
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