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Screening of potential hydrate promoter/inhibitor species is essential in the investigation of clathrate hydrates in
many areas of industrial interest. However, experimental analyses do not yield sufficient information to deter-
mine whether molecular size, dipole moment, molecular mass, or any other parameters influence the thermody-
namic stability of clathrate hydrates in general. The present contribution employs a mutual information-based
nonparametric statistical analysis to identify trends in a multivariate data set for 21 clathrate hydrate formers.
It is showed through the introduction of a simple correlation that prediction of the heat of dissociation of a clath-
rate hydrate may be sufficient to predict the entire phase equilibrium curve above the ice point. The dipole mo-
ment and molecular volume of hydrate forming species influence the dissociation pressure curve, and distinctive
behaviours may be observed for cyclic gas species as compared to non-cyclic species.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Clathrate hydrates are an ice-like crystalline inclusion compound
formed by intermolecularly hydrogen-bonded water molecules
enclosing particles of a guest gas species within a lattice structure
consisting of several “cages” or cavities. These materials are significant
in offshore natural gas exploitation operations, where methane hy-
drates frequently form, causing blockages in pipelines [1,2]. Other
areas of interest in clathrate hydrate research include their use in indus-
trial separation processes [2-4] and in storage of energy carrier gases
such as methane [5,6] and hydrogen [7,8].

With regard to pipeline blockages in natural gas exploitation, it is
necessary to determine which chemical species can serve as inhibitors
of the hydrate formation process at the pipeline conditions (i.e., T and
P). Screening potential inhibitors is therefore an important and neces-
sary task in the natural gas extraction industry. In terms of using clath-
rate hydrates as an energy storage medium, it is essential to determine
which species can serve as hydrate promoters. Since clathrate hydrates
form at very high pressures at ambient temperatures—e.g., hydrogen
[7]—it is necessary to determine which guest species can serve to
lower the pressure at which the clathrate hydrate can form. Therefore,
screening of, for instance, hydrogen hydrate promoters would be essen-
tial if clathrate hydrates are to serve as a viable energy storage material
in any planned future hydrogen economy [8].

Recently, a new tool for analyzing data sets containing large num-
bers of dependent and independent variables has been developed [9]:
The maximal information coefficient (MIC). Firstly, the MIC falls under
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a broader category of statistics known as maximal information-based
non-parametric (MINE) statistics, which are used to identify and classify
relationships between variables in data sets. The MIC was originally
used [9] to detect novel relationships, as well as to confirm known rela-
tionships, within a wide array of available data (global health data, ge-
nomic expression information, human gut microbiota, and major-
league baseball statistics). This contribution seeks to employ MINE sta-
tistics to determine the presence of relationships, if any, between the
molecular properties of various hydrate-forming gas species and the
thermodynamic stability of the associated clathrate hydrate systems.
This is the first time MINE statistics have been used in such a manner
for clathrate hydrates.

2. Theory and methods
2.1. Systems considered

Several clathrate hydrate systems were considered in this study. Al-
together, 21 guest species were considered. While not all species
formed the same clathrate hydrate structure (i.e., sI, sll or sH), the inter-
molecular forces and molecular properties influencing clathrate hydrate
stability are fundamentally similar for all clathrate hydrate systems. In
addition, only liquid water + clathrate hydrate phase equilibria were
considered (i.e., T > 273.15 K), such that similar phase equilibria are
studied in parallel. Table 1 summarizes the data set used in this study.

2.2. Variables considered

Three molecular properties of the clathrate hydrate guest species
where considered: Molecular mass, dipole moment, and van der
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Table 1
Summary of clathrate hydrate systems considered in this study.
Species Temperature range/K Data points
Furan [10] 277.0-2774 5
Cyclopentane [10] 279.9-280.3 5
Argon [11] 330.8-406.1 49
Methane [12,13] 273.7-298.1 11
Carbon monoxide [14] 274.5-284.9 9
Carbon dioxide [14] 277.5-282.5 3
Ethene [15] 273.3-289.6 11
Ethane [15] 273.8-283.4 3
1,3-Dimethylcyclohexane [6] 276.0-282.5 10
Propane [12,16] 275.0-289.3 11
1,1,1,2-Tetrafluoroethane [17] 273.5-283.1 9
1,1-Dichloro-1-fluoroethane [17] 273.4-281.5 8
1,1-Difluoroethane [17] 273.4-288.2 11
Hydrogen sulfide [18] 277.7-301.3 19
Carbonyl sulfide [18] 274.7-281.5 19
Sulfur dioxide [19] 279.9-285.2 12
Methyl mercaptan [19] 283.5-285.0 5
Isobutane [20,21] 273.4-275.1 6
Nitrogen [13,22-24] 273.4-286.2 12
Hydrogen [25] 294.4-382.8 17
Tetrafluoromethane [26] 276.6-317.1 37

Wiaals volume. The dipole moments for each species were estimated in
ArgusLab [27-31] at the Hartree-Fock level using the PM3 Hamiltonian
[32,33]. The van der Waals volumes were determined by using a modi-
fied Bondi method [34]. In order to describe the phase equilibria, a linear
trend line was fitted to the natural logarithm of the dissociation pres-
sure (P) data expressed as a function of the reciprocal of the tempera-
ture (T):

InP = a(1/T) + b (1)

The magnitude of the slope (a) describes the sensitivity of the disso-
ciation pressure to changes in the system temperature, and the inter-
cept (b) is related to the dissociation pressure itself. The slope a is
related to the heat of dissociation (AHy;ss,) and the gas phase compress-
ibility factor (Z) by means of the Clausius-Clapeyron equation [35]:

d(InP)/d(1/T) = —AHgiss./(ZR) (2)

It may be noted that the Clausius-Clapeyron equation can be pre-
sented in integral form, assuming an approximately constant heat of
dissociation, and so the parameters (a and b) presented in Eq. (1) can
be related to the heat of dissociation and a reference temperature (Tg)
and a reference pressure (Pg):

a = —AHgiss /(ZR) G)
b = InPg + AHgjss /(TRZR) (4)

In order to assess the stability of the clathrate hydrate systems at
ambient conditions, T was adjusted so as to be relative to ambient tem-
perature (i.e., T = 298.15 K). The magnitude of the y-intercept (b) of
this linear trend line would then serve to describe the. A summary of
the molecular properties and phase equilibrium trend line fits are pre-
sented in Table 2. It is clear that using a linear trend to describe the nat-
ural logarithm of the dissociation pressure as a function of the reciprocal
of temperature is reasonable, since the correlation coefficient (R?)
values of such fits are >0.770 in all cases (and above 0.902 in all but
one case).

2.3. Data exploration statistics

In general, MINE statistics can be used to identify associations be-
tween variables in large data sets, as well to characterize them

according to measures such as monotonicity and non-linearity. Howev-
er, many MINE statistics and functions are not truly general, and with
sufficiently large sample sizes, such statistics should capture wide
ranges of associations or relationships, or all of the functional relation-
ships. The case of the latter point is especially significant, as many rela-
tionships are not well described by a single function (such as a
superposition of functions) [36-39]. Moreover, certain MINE statistics
fail to show correlation for certain function types; for a parabolic func-
tion, the Spearman rank correlation coefficient is —0.01 (suggesting
the absence of a relationship), whilst the mutual information coefficient
of Kraskov and co-workers [40] would be 3.15 (weakly suggesting the
presence of a trend) [9]. Therefore, since the MIC overcomes such limi-
tations, it can be a preferred tool in the search for relationships between
variables in multivariate data sets.

The MIC was developed from the concept of drawing up a grid on the
scatterplot of two variables, which would encapsulate any relationship
existing between said variables. For a given set of data, all possible
grids up to a maximum grid resolution (dependent on the sample
size) are explored. In the case of a set of bivariate data, for example,
for every pair of integers (x,y) the largest possible mutual information
achievable by a grid of size x-by-y is computed. These mutual informa-
tion values are then normalized to compare between different grids and
different dimensions, such that the normalized values lie between 0 and
1. The characteristic matrix M is then defined [9]:

M = (myy) (5)

where my, is the highest normalized information which can be
achieved by any x-by-y grid, and the MIC is then the maximum value
in the matrix M. MIC is subject to the constraint [9]:

xy<B (6)

in which B is related to the sample size, n. The calculation for B, as pro-
posed by Reshef and co-workers [9], is as follows:

B — n°6 7)

Since every value in the matrix M is between 0 and 1, so then the
MIC will always be between 0 (no relationship present at all) and 1 (a
relationship definitely present). A routine developed in the literature
[9] to determine the MIC has been employed in the present study.
This routine does not optimize over all possible grids for a given data
set, but instead makes use of a dynamic programming algorithm to op-
timize over a subset of all possible grids. This approach has been shown
to approximate the true value of the MIC very closely [9].

Additionally, a measure of non-linearity, v, can also be developed by
incorporating the Pearson product-moment correlation coefficient, p
[9]:

v = MIC-p? (8)

such that as v tends to O a linear relationship is present, whereas for the
case in which it tends to unity then a non-linear relationship is present.

Other quantities of interest in any data exploration exercise which
makes use of the MIC are the maximum asymmetry score (MAS), max-
imum edge value (MEV), and the minimum cell number (MCN). The
MAS measures the deviation from monotonicity of the data set in ques-
tion, and defined by [9]:

MAS = maXxyy-g| Mxy-Myx| )

MEV describes how close the data set appears to originate from a
single function, since it is entirely possible that several subsets may
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