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a b s t r a c t

In modern systems, many well-known techniques (e.g., dynamic voltage and frequency scaling, job
scheduling etc.) have been developed to achieve low power, high performance, appropriate quality-of-
service or other specific purposes. Workload prediction is an extremely critical factor for bringing these
techniques into full play. However, it is very difficult to accurately predict the workloads of upcoming
tasks if they are varying drastically. In this paper, we propose a new hybrid fuzzy-Kalman filter and the
corresponding area-efficient hardware architecture to accurately and quickly predict the workload with
large variation. To decrease the hardware complexity while maintaining sufficient accuracy, the
computation of Kalman Gain is simplified with a lookup table method. In addition, the workload and
covariance values in Kalman filter are properly normalized and truncated to significantly reduce the bit
length of hybrid workload predictor. Furthermore, a simplified fuzzy controller is developed to adaptively
adjust the measurement noise covariance of Kalman filter so that the prediction error can be further
lowered. Experimental results of real applications exhibit that the proposed hybrid fuzzy-Kalman filter
can achieve lower prediction error and smaller hardware area when compared to previous workload
predictors.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development in the modern computer systems,
more and more researches attempt to employ famous techniques
(e.g., dynamic voltage and frequency scaling (DVFS) [1–3], job
scheduling [4–6], task allocation [7–9], or other management
systems) to achieve specific purposes. For instance, power man-
agement strategies are usually adopted to lengthen the lifetime of
batteries in portable systems. DVFS is a popular power manage-
ment strategy that assigns a suitable voltage and frequency for
each task to save the power consumption under performance
constraints. In addition, the grid computing environment, multi-
core architecture and real-time system focus on keeping the
quality-of-service (QoS), improving performance, or meeting
deadline guarantees by resource selection, task allocation, job
scheduling, or other management mechanisms.

Most of the above-mentioned techniques confront an impor-
tant problem: how to exactly and quickly predict the workloads of
upcoming tasks for bringing them into full play [3]. In general,
there are three categories to estimate the workload of the next
upcoming task: workload profiling, workload model, and work-
load prediction (or called workload forecast). Profiling-based

approaches [10,11] use statistical estimation techniques to extract
reliable workload statistics, but they may not be very suitable for
predicting the workload with large variation. On the other hand,
many researches [12,13] build the workload model to compute the
predicted workload of the upcoming task by observing the
characteristics of specific applications. Workload model probably
predicts the workload more accurately, but it can only be utilized
in some specific applications. In the case of workload prediction
category, it adopts some specific strategies to predict the workload
of upcoming task by previous information. Workload prediction is
more suitable to be implemented by hardware for real-time
systems with violent variation in workload.

Homeostatic workload prediction [7] is one of the most
intuitive workload prediction methods. The next workload pre-
dicted by this method is likely to increase or decrease a “certain”
value to the current workload according to the difference between
the current workload and the mean of previous workloads.
However, it is difficult to decide the proper quantity of “certain”
value for different task in various applications. History-based
workload prediction [14,15] is another simple and the popular
workload prediction method. The next workload predicted by this
method is equal to the sum of weighted workloads of previous
tasks. Signature-based workload prediction [12,16,17] constructs
the unique workload prediction mechanism based on the char-
acteristics of tasks in the specific application. In addition, recent
researches [18–24] have proved that many famous controllers or
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filters, such as proportional-integral-derivative controller [18,19],
fuzzy controller [20,21], or Kalman filter [22–24], could efficiently
predict the workload of upcoming tasks exactly and stably.
Especially when the workload is varying drastically, these methods
can obtain better performance at workload prediction. More
details about different workload prediction methods will be
explained in Section 2.

Workload prediction can be realized by software or hardware.
Software approach predicts the workload by performing the
workload prediction algorithm at a processor. Software approach
is flexible and can use a sophisticated algorithm to enhance the
accuracy of workload prediction. On the contrary, hardware
approach uses extra hardware circuit to quickly predict the next
workload so that no additional CPU execution time, program
memory, and modification to software are required. In general,
sophisticated prediction algorithms are unsuitable for hardware
implementation. Therefore, few of the above-mentioned workload
prediction methods have both advantages of high accuracy and
low hardware complexity. To accurately and quickly predict the
workload of real-time systems, this paper proposes a new hybrid
fuzzy-Kalman filter and its low-area hardware architecture. Firstly,
we simplify all multi-dimensional matrixes of Kalman filter into
simple scalars to solve workload prediction problem and replace
the division operation of Kalman Gain with a lookup table method.
Subsequently, the workload and covariance values in Kalman filter
are properly normalized and truncated to largely reduce the
hardware complexity. Moreover, a simplified fuzzy controller is
used to adaptively adjust the measurement noise covariance
variable of Kalman filter for further reducing the prediction error.
Experimental results of several applications exhibit that the
proposed hybrid fuzzy-Kalman filter can achieve smaller predic-
tion error than previous methods. Besides, its hardware area is
much smaller than that of other existing methods. The remainder
of this paper is organized as follows. Section 2 briefly reviews
several famous workload prediction methods. Section 3 illustrates
the main ideas of our prediction method and describes the
detailed architecture of the proposed hybrid fuzzy-Kalman filter.
Section 4 presents the implementation and experimental results.
Finally, a conclusion of this paper is drawn in Section 5.

2. Workload prediction methods

In this section, several famous workload prediction methods,
including homeostatic prediction, history-based prediction,
controller-based prediction, filter-based prediction and hybrid
prediction, are reviewed. Before introducing these prediction
methods, the notations and basic terms used in the following
sections are first described in Table 1.

2.1. Homeostatic prediction

According to the relationship (greater or less) between the
current workload Wn and the mean of previous workloads Mean(n,
m), homeostatic prediction predicts the workload of next task
PWnþ1 by decreasing or increasing a “certain” value [7]. The
decrement or increment value may be independent on or propor-
tional to the current workload Wn. Moreover, the decrement or
increment value can be static (it is fixed for all predictions) or
dynamic (it is adapted at each prediction). The algorithm of
homeostatic prediction is shown in Fig. 1.

2.2. History-based prediction

History-based prediction [14,15,25] is a simple and the popular
workload prediction method. Unlike homeostatic prediction that goes

back to the mean of previous workloads, history-based prediction
predicts the workload of next task through the tendency information
of previous workloads. Fig. 2 shows the algorithm of this kind of
prediction method which obtains the predicted workload of next task
PWnþ1 by computing the sum of the weighted workload of previous
tasks. There are two main factors in history-based prediction: window
size and weight of the nth task. Window size decides the amount of
the weighted workloads in previous tasks which will be accumulated.
In Fig. 2, the variable “k” denotes the window size of history-based
prediction. Another important factor, the weight of the nth task
(denoted by WRn), will be used to control the affection from each
previous task in the predicted workload of next task. UW_k (uniform
window-size k) [14] and polynomial fitting [25] are two well-known
methods in history-based prediction. The predicted workload of the
next task from UW_k is the average value of the previous kworkloads.
That is, the window size of UW_k is equal to k and theweight of UW_k
is equal to 1/k. The weight of polynomial fitting can be generated by
different methods (e.g., Burg's method [26]).

Table 1
Notations and basic terms used.

Symbol Description
Wn The workload of the nth task
Mean(n, m) The mean of previous workloads

from the nth task to the m-th task
PWn The predicted workload of the nth task
WRn The weight of the nth task
εn The difference between Wn and PWn

PCnþ1 The output of the proportional controller
ICnþ1 The output of the integral controller
DCnþ1 The output of the derivative controller
KP The weight of the proportional controller
KI The weight of the integral controller
KD The weight of the derivative controller
xn

The nth posteriori covariance estimation
P�
n The nth priori covariance estimation

Α State transition matrix
B Control input matrix
un The control input in the nth state
Q Process noise covariance
H Measurement matrix
R Measurement noise covariance
KGn Kalman Gain
zn The nth state measurement
I The matrix whose elements all are 1

Fig. 1. The algorithm of homeostatic prediction.

Fig. 2. The algorithm of history-based prediction.
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