
Multi-scale dynamics simulation of protein based on the generalized
Langevin equation combined with 3D-RISM theory

Fumio Hirata a,⁎, Bongsoo Kim b

a College of Life Sciences, Ritsumeikan University, and Molecular Design Frontier Co. Ltd., Kusatsu, Shiga 525–8577, Japan
b Department of Physics and Institute for Soft and Bio Sciences, Changwon National University, Changwon 641–773, South Korea

a b s t r a c ta r t i c l e i n f o

Article history:
Received 8 June 2015
Accepted 14 July 2015
Available online 18 August 2015

Keywords:
Multiscale dynamics
Protein structure
Generalized Langevin theory
3D-RISM theory
Principal component analysis

A theory to realize a multiscale dynamics of protein is proposed based on the generalized Langevin equation
combinedwith the 3D-RISM theory. The idea of normalmode analysis (NMA) is adopted to decouple the dynam-
ics into different modes having respective time scales. In order to decouple the modes, the variance–covariance
matrix concerning the structuralfluctuation of protein in solution is diagonalized, insteadof theHessianmatrix of
a harmonic oscillator in vacuum. An algorithm to estimate the friction coefficient exerted on each atomof protein
due to solvent is also proposed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Structural dynamics of protein plays a crucial role in the expression of
their intrinsic functions. The best example is a process of the signal
transduction due to protein, which in general consists of a series of the
molecular recognitions, chemical reactions, and mass transportations for
propagating a signal from upstream to downstream of the process. Each
process of the signal-transduction should be precisely controlled in
time, otherwise the system malfunctions due to failure of controlling
the signal traffic, and the living body will become sick or dead. For exam-
ple, a group of proteins called “ion channel” has a device to permeate an
ion fromone side ofmembrane to the other [1]. The conduction rate is de-
termined by various factors related to structure of the protein, but the
most important one is the mechanism called “gating,” which plays a
role similar to a “valve” in the hydrodynamic system. The opening and
closing of a gate are often regulated by a structural fluctuation of the pro-
tein, such as a camera-iris-likemotion found in the potassiumchannel [2].

There exist the two essential requirements for describing the struc-
tural dynamics of biomolecules theoretically in a sensiblemanner. First-
ly, the structure and dynamics of protein should be described in atomic
resolution. The reason is because all biological functions performed by
protein are expressed in atomic scale. This requirement denies the pop-
ular approach so-called “coarse-grainedmodel” for protein, in which an
amino-acid residue is represented by a “big sphere,” for examples [3–6].
Coarse graining amino-acid residues in pore of an ion channel, for

example, will ruin the dynamics entirely, since such an ion is interacting
with atoms of residues consisting the pore, as well as with water mole-
cules in general [7]. Secondly, the protein dynamics should be conjugat-
ed or coupled in atomic scale with that of solvent or solution in which
the protein is immersed. The second requirement turns down the con-
ventional treatments of protein dynamics based on the phenomenolog-
ical Langevin theory in which solvent dynamics is decoupled from that
of solute and is represented by a phenomenological transport coefficient
[8,9].

Recently, the authors have presented a theory which meets the two
requirements stated above, based on the generalized Langevin theory
combined with the 3D-RISM theory [10,11] (see also Appendix A). The
theory consists of two equations of describing the time evolution of pro-
tein structure and the solvent density, which are correlated with each
other: the deviation or fluctuation of atomic positions from its equilibri-
um states, and the collective density field of solvent. These coupled
equations take a general form of the Langevin equation, having the fric-
tion and random force terms. In the theory, solvent dynamics is coarse-
grained in the level of the collective density of an atom of solvent, but
still retains atomic resolution. Two important features of the protein dy-
namics are revealed by the theory. Firstly, the structural dynamics of
protein is taking place on the free energy surface of protein including
the solvation free energy, not just on the molecular–mechanical (MM)
energy surface of protein. Secondly, the structural fluctuation of protein
has characteristics of the Gaussian process with the variance–covari-
ance matrix concerning the displacement of atomic coordinates from
its equilibrium position. The theory has been employed to conceptually
clarify the structural fluctuation of protein induced by thermodynamic
perturbations [12]. Althoughmany important aspects of the conjugated
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dynamics of protein and solvent have been revealed by the theory, the
proposed equations have not been solved numerically yet due to the
lack of recipe of solving the equations.

A difficult problem for applying the new theory to actual dynamics
of protein in solution by means of the numerical integration concerns
the “time step.” If one uses the small time step for solving the equation,
i.e., the time step typical to the all-atom-MD-simulation, or femtosec-
ond, the benefit of using the GLT/3D-RISM equation will not be so
great with respect to the computation time, although we still gain
a lot concerning physics of the process under concern. On the other
hand, if one uses a large time step typical to the collective motion
such as the hinge-bending motion, the dynamics will quickly fails due
to the divergence in energy and force. Therefore, it is desirable to device
amethod to decouple themodes from fast to slow, and assign appropri-
ate time steps depending on themode. In the present paper, we propose
amethod to decouple the dynamicalmodes based on the idea of normal
mode analysis (NMA) [13,14].

The paper is devoted to thememory of Dr. K. Arakawawho guided F.
Hirata, one of the co-authors, to the statistical mechanics of liquid and
solution.

2. Multi-scale dynamic algorithm for solving the
GLT/3D-RISM equation

In the ordinary NMA carried out in vacuum, one defines the normal
mode vector as a linear combination of the real-space displacement–
vector of atoms [13,14]. The matrix to transform the vectors is called
the “Hessian” or the variance–covariance matrix, which is nothing but
the force constant matrix in the coupled oscillator. By diagonalizing
the variance–covariance matrix, one obtains the normal mode vector
and the normal mode variables. So, one can assign an appropriate
time step or “amplitude” to each mode in the space of normal mode.
Then, by carrying out the inverse transformation from the normal
mode vector to the real-space vector, one can recover the displacement
of atoms in the real space. Since the normalmode vectors are complete-
ly orthogonal due to the diagonalization of Hessian, no concern is neces-
sary for violation of physics in real space, such as overlap of atoms in
protein, after the inverse transformation. It is the decoupling of modes
that brings us a benefit in the dynamics simulation.

However, NMA in vacuum cannot be applied to the actual dynamics
of protein in solutions. Firstly, the protein structures taken from thepro-
tein data bank (PDB) to minimize the energy are close to the equilibri-
um structures in aqueous solutions, but not in vacuum. The structures
are those of local energy minimum, which are in largely fluctuated
states from the equilibrium structure in vacuum. Secondly, due to the
high-energy state, it quickly relaxes to the equilibrium state in vacuum
by any finite displacement of atoms. The last statement is concerned
with the essential requirement of NMA in which a Taylor expansion of
the potential energy with respect to the atomic displacement should
be truncated at the second order for the harmonic analysis, or the diag-
onalization of the Hessian matrix.

Here, unlike NMA in vacuum, we consider the dynamics of protein
that is taking place in a global minimum of the free energy surface in
solution. The protein restores its equilibrium structure eventually after
any fluctuation around the minimum, small or large, unless the equilib-
rium conditions such as temperature and pressure are changed. In such
a case, we have already derived a generalized Langevin equation for the
structural dynamics of protein, which is combined with the 3D-RISM/
RISM equation (A brief review of the theory is provided in the
Appendix A.) [11]

Mα
d2ΔRα tð Þ

dt2
¼ −kBT

X
β

L−1
� �

αβ
�ΔRβ tð Þ−∫t0ds

X
β

Γαβ t−sð Þ � Pβ sð Þ
Mβ

þWα tð Þ: ð1Þ

In Eq. (1), the Greek suffices specify atoms in protein. ΔRα(t) is the
deviation of atom α in protein from its equilibrium position, defined
by, ΔRα(t)≡Rα(t) − 〈Rα〉, where 〈 ⋯ 〉 means the statistical average at
equilibrium, and Pβ(t) = Mβ dRβ(t)/dt. Γαβ(t − s) and Wα(t) are
the friction coefficient and the random force, respectively, whosemicro-
scopic expressions are derived in Ref. [11]. Thematrix L is the variance–
covariance matrix concerning the structural fluctuation of atoms,
defined by,

L ¼ ΔRΔRh i: ð2Þ

The essential feature of the Eq. (1) lies in the first term in the right-
hand-side, that takes a form of the Hookian restoring force with kBTL−1

as the force constant or theHessian. Namely, the Eq. (1) takes the form of
a Langevin harmonic oscillator. It is worthwhile to note that the har-
monic nature of the equation is not originated from the truncation of
Taylor expansion of the potential energy at the second order of the
displacement as in NMA, but from the projection of all other variables
in the phase space onto the dynamic variables including the atomic
displacement of protein. The projection turned the dynamics from deter-
ministic to stochastic or diffusive ones that are governed by the fluctua-
tion–dissipation theorem. It is this feature that we can take advantage
in order to decouple the modes of protein dynamics.

We adopt the idea of NMA in order to decouple the different modes
of dynamics of protein in solution, but with some modifications, which
we refer to as “Generalized Langevin Mode Analysis (GLMA).” Firstly,
the Hessian or force constant in Eq. (1) is identified as the second deriv-
ative of the free energy surface including solvent effect, not of the me-
chanical potential energy surface, that is,

kBT ΔRΔRh i−1
� �

αβ
¼ ∂2 F Rf gð Þ

∂Rα∂Rβ
; ð3Þ

where F({R}) is the free energy surface of the protein in solution,
consisting of the interactions among atoms in protein, U({R}), and the
solvation free energy Δμ({R}) ({R} represents a set of coordinates of
atoms in protein) [11]. Secondly, all the eigenvalues of the variance–
covariance matrix should not necessarily be positive. Since our dynamics
takes place in the global minimum of the free energy surface, the eigen-
values associated with the global structural change should be positive.
However, those associated with the local structural change such as
the exchange of a hydrogen-bond between an amino-acid residue
and a water molecule, can be negative, which correspond to a tran-
sient state among local free energy minima. We assume that only
few largest eigenvalues associated with the collective modes should
be positive in order for the protein to stay in the global minimum. In
that respect our approach is not just NMA in its narrow meaning,
but rather a general principal-axis (or component) analysis on the
quadratic free energy surface [15,16].

In the actual implementation of the theory to the GLT/3D-RISM sim-
ulation, an optimumsize of time step should be carefully chosen tomeet
the following two requirements: firstly, the time step should be as large
as possible in order tomaximize the sampling of the free energy surface,
and secondly, the first few eigenvalues should be positive during the
simulation.

We follow the Verlet-type algorithm for the numerical integration
of the GLT/3D-RISM equation. The Verlet-type algorithm reads,

ΔRα t þ Δtð Þ ¼ 2ΔRα tð Þ−ΔRα t þ Δtð Þ þ ∂2ΔRα tð Þ
∂t2

Δt2: ð4Þ
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