

Contents lists available at ScienceDirect

Journal of Molecular Liquids

journal homepage: <www.elsevier.com/locate/molliq>

Emission properties of $[Eu(hfa)_3(phen)]$ and $[Eu(hfa)_3(TPPO)_2]$ dispersed in a fibrous network comprising p -chlorophenol $+$ AOT organogels

Yasuhiro Watanabe ^a, Takashi Harada ^a, Hideki Kawai ^{b,}*, Toshihiko Kaji ^c, Masahiro Hiramoto ^d, Katsura Nishiyama ^{a,}*

^a Faculty of Education, Shimane University, Matsue 690-8504, Japan

^b Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan

^c Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

^d Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan

article info abstract

Article history: Received 10 July 2015 Received in revised form 11 August 2015 Accepted 18 August 2015 Available online 8 September 2015

Keywords: Organogel Soft material Eu complex Gelaphilic Solvophilic

1. Introduction

 $Eu³⁺$ complexes have been extensively employed as emitting devices, which can be applied to circularly polarized emitters [\[1,2\],](#page--1-0) bioassay [\[3\]](#page--1-0), and phosphors for temperature sensing [\[4\]](#page--1-0). Such versatile applications of Eu^{3+} complexes are due to the remarkably high quantum efficiency of emission (Φ_{em}). Moreover, the dominant 4f-4f emission from Eu^{3+} complexes, which is assigned to the ${}^{5}D_{0}$ – ${}^{7}F_{2}$ transition (appearing at around 610 nm), typically has a very narrow spectral bandwidth in solution (≤80 cm⁻¹). These properties make Eu³⁺ complexes suitable as bright, luminescent, and monochromatic light sources. Specifically, the high efficiency of Φ_{em} can be explained by the larger energy difference between the ground and excited states of the Eu³⁺ ion when compared to that of other rare earth (Ln^{3+}) ions, which inhibits the nonradiative transition of the excited ion [\[5\].](#page--1-0) On the other hand, the environment around the Eu^{3+} ligands or solvents alters both the maximum wavelength and spectral bandwidth of their emission spectra to a lesser degree. These properties are also a characteristic of the 4f–4f transition.

Corresponding authors.

E-mail addresses: kawai.hideki@shizuoka.ac.jp (H. Kawai),

katsura_nishiyama@edu.shimane-u.ac.jp (K. Nishiyama).

The rare-earth complexes $[Eu(hfa)_3(hen)]$ and $[Eu(hfa)_3(TPPO)_2]$ were dispersed in the fibrous network structure of an organogel of phenol and surfactant AOT. Steady-state and time-resolved emission properties arising from the complex–organogel interactions of these two complexes were investigated. The results suggest that $[Eu(hfa)_{3}(phen)]$ localizes around the fibrous structure of the organogel architecture, whereas $[Eu(hfa)_{3}(TPPO)_{2}]$ favors the solvent domain even when dispersed in the gel environment. These properties characterize the steady state and time-resolved behavior in the emission processes of the $[Eu(hfa)_{3}(phen)]$ and $[Eu(hfa)_{3}(TPPO)_{2}]$ complexes, which can be regarded as "gelaphilic" and "solvophilic," respectively.

© 2015 Elsevier B.V. All rights reserved.

In our previous report [\[6\]](#page--1-0), the Eu³⁺ complex [Eu(hfa)₃(phen)] was dispersed in an organogel composed of p-chlorophenol and surfactant AOT in m-xylene solvent. Hexafluoroacetylacetone (hfa) and 1,10-phenanthroline (phen) were used as the ligands for the Eu^{3+} complex ([Chart 1\)](#page-1-0). Nanosecond laser spectroscopy was used to detect the emission time profile, $I(t)$, of the system. Based on the detailed analysis of $I(t)$, we have concluded that the system generates amplified spontaneous emission (ASE) upon laser excitation [\[6\]](#page--1-0). In our previous paper, ASE generation has been ascribed to the specific structure of the complex dispersed in the gel. Atomic force microscopy [\[7\]](#page--1-0) and optical microscopy in this study show that the organogel formed from p-chlorophenol and AOT has a "fiber bundle" structure with a length and diameter of 15 μm and 0.5 nm, respectively. Moreover, precise analysis of steady-state emission spectra of the system [\[8\]](#page--1-0) suggests that $[Eu(hfa)₃(phen)]$ is localized around the exterior of the fiber bundle when dispersed in the gel. Because of such a specific structure, $[Eu(hfa)_{3}(phen)]$ can be dispersed in the organogel up to a maximum concentration of $c_{\text{max}} =$ 1.0×10^{-3} mol dm⁻³. This c_{max} value is a magnitude higher than that of the $[Eu(hfa)_3(phen)]$ complex dissolved in the *m*-xylene solvent, where $c_{\text{max}} = 1.0 \times 10^{-4}$ mol dm⁻³. We have proposed that such a specific dispersing structure of $[Eu(hfa)_3(phen)]$ in the organogel would make ASE generation possible.

On the other hand, Eu^{3+} complexes possessing both hfa and a ligand with a P=0 group have been known to have Φ_{em} as high as

Chart 1. Chemical structures employed in this work. (a) Eu^{3+} complexes and (b) the organogel.

those with a phen ligand when applied to emitting materials [\[9,10\].](#page--1-0) Triphenylphosphine oxide (TPPO) is a representative ligand comprising the P=0 group. Hasegawa, Nakamura and coworkers have suggested that the vibration frequency of the $P=O$ group can also inhibit nonradiative transitions of Eu^{3+} or Ln^{3+} 4f–4f emission, which eventually enhances the radiative path [\[9,10\].](#page--1-0) It is also reported that the C–F group in the hfa ligand plays a similar role in the emission process [\[9\].](#page--1-0) Given the ligand-driven properties of Eu^{3+} complexes that behave as emitting materials, a question arises on the emission behavior of the TPPO ligands when dispersed inside the fibrous network of the organogel.

In this report, steady-state emission spectra and $I(t)$ measurements suggest that $[Eu(hfa)_3(TPPO)_2]$ and $[Eu(hfa)_3(phen)]$ show completely opposite behavior when dispersed in the organogel: whereas $[Eu(hfa)_{3}(TPPO)_{2}]$ favors the solvent domain, $[Eu(hfa)_{3}(phen)]$ localizes in the vicinity of the organogel fibrous network. We, therefore, propose that $[Eu(hfa)_{3}(phen)]$ and $[Eu(hfa)_{3}(TPPO)_{2}]$ may be called "gelaphilic" and "solvophilic," respectively. This study shows the differences in emission properties due to the contrasting natures of these complexes. Henceforth, we denote the systems where $[Eu(hfa)_3(phen)]$ and $[Eu(hfa)₃(TPPO)₂]$ are dispersed in the organogel as "**phen@gel**" and "TPPO@gel," respectively. In an analogous way, we refer to the samples with these complexes dissolved in the *m*-xylene solvent as "**phen@liq**" and "TPPO@liq," respectively.

2. Materials and methods

2.1. Materials

The preparation of $[Eu(hfa)_3(phen)],$ or $tris(1,1,1,5,5,5$ hexafluoropentane-2,4-dionato)(1,10-phenanthroline)europium(III), has been described in our previous report [\[8\]](#page--1-0). In this work, $[Eu(hfa)₃(TPPO)₂]$, or tris(1,1,1,5,5,5-hexafluoropentane-2,4-dionato) {bis(triphenylphosphine oxide)}europium(III), was synthesized as follows. [Eu(hfa)₃(H₂O)₂] (1.43 g, 1.77 × 10⁻³ mol) and TPPO (0.93 g, 3.35×10^{-3} mol) were dissolved in 30 cm³ methanol, and the solution was stirred for 24 h under reflux. After the reaction, the solvent was removed with a rotary evaporator to yield brown viscous oil. After filtration, excess toluene was added to obtain a solution phase. The solvent remaining in the filtrated solution-phase was removed by the evaporator. The resulting solid was recrystallized from hot methanol. The grain crystal thus obtained was collected by filtration and dried in vacuo. Yield: 22%. ¹H NMR (acetone- d_6 , 400 MHz, 293 K) δ : 8.5–8.1 (broad), 7.8–7.5 (m, aromatic), 5.4–5.1 (broad) ppm. FTIR (ATR): 1740, 1651 $(C=0)$, 1500, 1250 $(C-F)$, 1192, 1142 $(P=0)$, 795, 721, 687, 660 cm−¹ . Anal. Found: C, 45.29; H, 2.57; N, 0.13%. Calcd. for $C_{51}H_{33}EuF_{18}O_8P_2$ · H₂O: C, 45.45; H, 2.62; N, 0.00%.

Preparation methods of the phenol $+$ AOT organogel are detailed in our previous reports [\[6,8,11\],](#page--1-0) and the gel architecture of this organogel has been discussed in detail by Simmons and coworkers [\[7\]](#page--1-0). In brief, 0.14 mol dm⁻³ p-chlorophenol and 0.10 mol dm⁻³ AOT (bis(2ethylhexyl)sulfosuccinate) in the m-xylene solution were mixed to spontaneously produce a gel at room temperature (298 K). On dispersing the Eu³⁺ complexes into the organogel, $[Eu(hfa)₃(phen)]$ or $[Eu(hfa)₃(TPPO)₂]$ was added to the gel with a dispersing concentration c_{disp} , which is specified in the latter sections, and the system was heated up to 353 K to form an isotropic solution. The system was then cooled down to room temperature to reobtain the gel phase. Surface structures of the gel samples were observed with a Nikon Eclipse LV 100ND microscope, equipped with an objective lens (magnification \times 150). The microscopy images were recorded through a DS-Fi2 digital imaging camera. For optical microscopy, the gel sample was melted under 353 K, drop-cast onto a glass slide, and left to cool to room temperature for observation.

2.2. Measurements of the photochemical properties

Experimental setups of both steady-state and time-resolved spectroscopy are described in our previous paper [\[6\].](#page--1-0) In brief, a Jasco ILF-533 integrating sphere combined with a Jasco FP-6500 spectrofluorometer was used for the Φ_{em} measurements. For $I(t)$ measurements, we used the laser equipment reported elsewhere [\[6,10,12\]](#page--1-0). Third harmonics of an Nd:YAG laser ($\lambda_{\text{ex}} = 355$ nm), from B. M. Industries (10 Hz, 9 ns), was used as an excitation light source. The hfa moiety of $[Eu(hfa)₃(phen)]$ or $[Eu(hfa)₃(TPPO)₂]$ was excited at $\lambda_{ex} = 355$ nm and emission from the Eu^{3+} ion was obtained as a result of the energy transfer from the hfa ligand to the rare earth ion. The gel or liquid sample was contained in a quartz cell, where the excitation beam traveled 2 mm with normal incidence. The emission from the system was monitored from a perpendicular side of the cell, which was monochromated at 614 nm to detect the $Eu^{3+5}D_0$ ⁻⁷ F_2 emission. This was recorded with a digital oscilloscope at 1 GHz.

3. Results and discussion

3.1. Steady-state emission spectra of Eu^{3+} complexes

[Fig. 1](#page--1-0) illustrates steady-state emission spectra of the Eu^{3+} complexes studied in this work. As expected, the three dominant bands from the $Eu³⁺$ emission were in the region of 580, 593, and 610–620 nm due to the ${}^{5}D_{0}$ – ${}^{7}F_{0}$, ${}^{5}D_{0}$ – ${}^{7}F_{1}$, and ${}^{5}D_{0}$ – ${}^{7}F_{2}$ transitions, respectively [\[9\]](#page--1-0). Notably, these transitions are classified as forbidden, magnetic-dipole, and electric-dipole transition bands, respectively [\[9\]](#page--1-0). In the present complexes, the ${}^{5}D_{0} - {}^{7}F_{2}$ band is 10 times more intense than the ${}^{5}D_{1} - {}^{7}F_{2}$ band owing to an asymmetric environment around the D_0 - ${}^{7}F_1$ band, owing to an asymmetric environment around the $Eu³⁺$ center [\[13,14\]](#page--1-0). Hasegawa and coworkers have reported that the ligand coordination geometry should be a square antiprism for $[Eu(hfa)₃(TPPO)₂]$, which has an asymmetric structure around the $Eu³⁺$ ion [\[12\].](#page--1-0) We therefore suggest that [Eu(hfa)₃(phen)] can also have an asymmetric coordination, which enhances the intensities of the $5D_0 - T_{2}$ band, detected at 612 nm or 614 nm either in the solvent or gel.

Because of the ${}^{5}D_{0}$ – ${}^{7}F_{2}$ transition of [Eu(hfa)₃(phen)], the band in the gel shifts by \approx 2 nm toward the red side of the spectrum when compared to that in the solvent. Moreover, the spectrum from phen@gel is broader than that of phen@liq. Such changes are attributed to the environment around the $[Eu(hfa)_3(phen)]$ complex. On the one hand, the ${}^{5}D_{0}$ – ${}^{7}F_{2}$ transition of **TPPO@liq** has three bands at 612, 614, and 617 nm, with the transition at 614 nm having the maximum intensity. In contrast, the TPPO@gel spectrum is rather broad and

Download English Version:

<https://daneshyari.com/en/article/5410069>

Download Persian Version:

<https://daneshyari.com/article/5410069>

[Daneshyari.com](https://daneshyari.com/)