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In this article, heat transfer analysis of an unsteady oblique stagnation point flow of elastico-viscous Walter's B
fluid over an oscillating-stretching surface, heated due to sinusoidal wall temperature is presented. The
governing partial differential equations are transformed into dimensionless form. The solution of obtained partial
differential equations is computed numerically using Chebyshev Spectral Newton Iterative Scheme (CSNIS). The
computed results are highly accurate and comparedwith previous studies in limiting sense. The effects of involv-
ing parameters on the fluid flow and heat transfer are shown through tables and graphs. It is importantly noted
that the amplitude of the local Nusselt number and skin friction coefficient enhances due to increase in the values
of unsteady parameter. The heat transfer rate increases, with increase in the values of Prandtl number. In non-
Newtonian fluid, the heat transfer rate decreases as compare to Newtonian fluid case. The variation of skin fric-
tion coefficient and local Nusselt number are discussed for the wide range of time and various pertinent
parameters.
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1. Introduction

Oblique stagnation-point flow appears when fluid from any source
impinges obliquely on a rigid wall at an arbitrary angle of incidence as
shown in Fig. 1. Many researchers have studied the steady two-
dimensional oblique stagnation-point flow of Newtonian fluid. Stuart
[1] was the first, who studied the orthogonal stagnation point flow.
Later on, Tamada [2] and Dorrepaal [3] had extended thework of Stuart
[1] by considering the oblique stagnation point flow. Reza and Gupta [5]
generalized the problem of Chiam [4] by studying the oblique stagna-
tion point flow over a stretching surface. In their paper, they ignored
the displacement thickness and pressure gradient. This was partially
rectified in a later study by Lok et al. [6]. Reza and Gupta [7] gave a cor-
rect solution to the above problem by fixing the errors in [5,6]. Drazin
and Riley [8], Tooke and Blyth [9] reviewed the problem and included
a free parameter associatedwith the shearflow component, which is re-
lated to the pressure gradient.Weidman andPutkaradze [10,11] studied
the steady oblique stagnation-point flow impinging on a circular cylin-
der. Recently, Husain et al. [12], Mahapatra et al. [13], Lok et al. [14],
Javed et al. [15,16], Hsiao [17], Zaheer et al. [18,19] have done notable
work on orthogonal and oblique stagnation point flows.

Non-Newtonian fluids are very significant owing to their wide use in
industries. The non-Newtonian fluid suspensions are usually encoun-
tered by civil, metallurgical, mining and chemical engineering. Many
fluids in nature have very complex behavior and cannot be predicted
from Newtonian fluid model. Experimentally different models are pre-
sented to predict the behavior of non-Newtonianfluids.Many viscoelas-
tic fluid models [20–28] have been proposed but here constitutive
equations of Walter-B fluid [29–31] are employed in the mathematical
formulation.

In literature, different types of surface conditions have been
employed, including constant surface heat flux, constant surface tem-
perature, convective boundary conditions and recently the heating
resulting from a catalytic surface reaction [32–37]. In all these studies,
the constant surface conditions have been taken into account, which
give a clear information about some basic process but it is not a realistic
assumption. The values of surface temperature does not remains con-
stant, it often fluctuate about some mean value. Following the Merkin
[38], Merkin and Pop [39], Kelleher and Yang [40] and Brown and
Riley [41], we have taken prescribed surface temperature as sinusoidal
in the region of oblique station point flow of elastico-viscous fluid
over an oscillating-stretching surface. The surface temperature oscil-
lates about some mean value Tw and its value is greater than the ambi-
ent temperature T∞ of the surrounding medium. An efficient numerical
scheme namely Chebyshev Spectral Newton Iterative Scheme [42]
(CSNIS) is implemented. The results are compared with the previous
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studies in limiting sense, which are in excellent agreement. The graph-
ical results are interpreted with respect to various parameters of inter-
est. The streamlines and isotherms are also plotted.

2. Problem formulation

We considered the unsteady two-dimensional flow of elastico-
viscous Walter's B fluid impinging obliquely over an oscillating-
stretching surface at y = 0 as shown in Fig. 1. The elasticity of the
fluid is assumed constant throughout the flow regime. The temperature
of surface is taken as sinusoidal, oscillating about the mean value Tw,
which is higher than the ambient temperature T∞ of the surroundings.
The flow and energy equations are (see ref. [31] and ref. [39])

∂u
∂x

þ ∂v
∂y

¼ 0; ð1Þ

∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

¼ −
1
ρ
∂p
∂x

þ ν∇2u−
k0
ρ

∂
∂t

∇2u
� �

þ u
∂
∂x

þ v
∂
∂y

� �
∇2u

�

−
∂u
∂x

∇2u−
∂u
∂y

∇2v−2
∂u
∂x

∂2u
∂x2

þ ∂v
∂y

∂2u
∂y2

þ ∂u
∂y

þ ∂v
∂x

� �
∂2u
∂x∂y

( )#
;

ð2Þ

∂v
∂t

þ u
∂v
∂x

þ v
∂v
∂y

¼ −
1
ρ
∂p
∂y

þ ν∇2v−
k0
ρ"

∂
∂t

∇2v
� �

þ u
∂
∂x

þ v
∂
∂y

� �
∇2v−

∂v
∂x

∇2u−
∂v
∂y

∇2v

−2
∂u
∂x

∂2v
∂x2

þ ∂v
∂y

∂2v
∂y2

þ ∂u
∂y

þ ∂v
∂x

� �
∂2v
∂x∂y

( )#
;

ð3Þ

∂�T
∂�t

þ �u
∂�T
∂�x

þ �v
∂�T
∂�y

¼ kf

ρCp

∂2�T
∂�x2

þ ∂2�T
∂�y2

 !
: ð4Þ

In the above equations, uðx; yÞ and vðx; yÞ are the velocity compo-
nents in x and y-directions, Tðx; yÞ is the temperature, pðx; yÞ is the pres-
sure, ν is the kinematic viscosity, ρ is the density, k0 is elasticity, Cp is the
specific heat and kf is thermal conductivity of the fluid. The boundary
conditions of the problem can be defined as

y ¼ 0 : u ¼ cxþ U0 cosΩt; v ¼ 0; T ¼ T∞ þ ΔT 1þ ε1 sinΩt
� �

;

y→∞ : u ¼ axþ by; T ¼ T∞;
ð5Þ

where a, b and c are positive constant of dimension [1/T], T∞ is the am-
bient temperature and ΔT=Tw−T∞ is some temperature scale, ε1 is the

amplitude of the imposed temperature oscillation,Ω is the frequency of
the oscillation. Upon using the following non-dimensional variable
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in Eqs. (1–5), we get the following form
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p
is the dimensionless constant which describes

the amplitude of the plate oscillation. Introducing the stream functionψ,
which satisfies the continuity Eq. (7) identically, we write the velocity
components as
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By eliminating pressure from Eqs. (8) and (9) and then after using
Eq. (12), Eqs. (7–11) take the following form
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where γ= b/c represents shear in the stream, β=Ω/c is dimensionless
unsteady parameter, We = k0c/ρν be the Wiessenberg number and
Pr = μCp/kf be the Prandtl number. Suppose the solution of Eqs. (13–
14) subject to boundary conditions (Eq. 15) is of the form

ψ ¼ xf yð Þ þ g y; tð Þ; T ¼ θ y; tð Þ; ð16Þ

Fig. 1. Geometry of the unsteady two-dimensional elastico-viscous fluid flow which is
impinging obliquely over an oscillating-stretching surface.
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