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Themeasurement of thefield and frequency-dependent, complex susceptibility, χ (ω,Η)= χ′(ω, H)− iχ″ (ω,Η),
is an established method for investigating the dynamic properties of magnetic fluids. Polarised measurements
havebeenused to investigatemany properties ofmagneticfluids, including, relaxationmechanisms, aggregation,
magnetic losses, loss factor tanδ, power factor sinδ, and the influence which polarising fields may have on the
hysteresis and isotropic properties of samples.
In this paper, a review is given of these topics and typical results are presented.
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1. Introduction

Magnetic fluids consist of colloidal suspensions of nanoparticles of
ferromagnetic or ferrimagnetic materials dispersed in a carrier liquid
and stabilized by a suitable organic surfactant. The surfactant coating
creates an entropic repulsion between particles [1], such that thermal
agitation alone is sufficient to maintain them in a stable dispersion.
The particles are single-domain and are considered to be in a state of
uniform magnetisation with magnetic dipole moment (Wb m),

m ¼ Msv ð1Þ

whereMs is the saturationmagnetisation (Wb/m2) of the of themateri-
al and v is themagnetic volumeof the particle. The preferred orientation
of themagnetic moment is along an axis, or axes, of easymagnetisation
and this direction depends generally on a combination of shape and
magneto-crystalline anisotropy denoted by the symbol K. Also, when
in suspension their magnetic properties can be described by the
Langevin function (L(ξ)), suitablymodified to take account of a distribu-
tion of particle sizes. The magnetisation M is described by the Langevin
expression,

M ¼ Ms cothξ−1=ξ½ � ð2Þ

where L(ξ)= ξ / 3− ξ 3/45+ ξ 5/945+…., and ξ=mΗ/kT, where k is
Boltzmann's constant T is temperature and Η is the magnetizing field.

Thus L(ξ) is a function of H, H3, H5 etc which give rise to the non-
linear properties of the samples.

One convenient method of investigating the dynamic properties of
magnetic fluids is by measurement of the frequency-dependent com-
plex, relative susceptibility,χ(ω), which may be written in terms of its
real and imaginary components, where,

χ ωð Þ ¼ χ0 ωð Þ−iχ″ ωð Þ: ð3Þ

It has been shown that the theory of Debye [2] developed to account
for the anomalous dielectric dispersion in dipolar fluidsmay be used [3,
4,5] to account for the analogous case of magnetic fluids. According to
Debye's theory, χ(ω) has a frequency dependence given by the equa-
tion,

χ ωð Þ ¼ χ0−χ∞ð Þ= 1þ iωτð Þ þ χ∞ ð4Þ

where the static susceptibility

χ0 ¼ nm2=3kTμ0: ð5Þ

χ∞ is the high frequency susceptibility at a frequency below that of
resonance, m is the particle magnetic moment, n is the particle number
density, τ is the relaxation time and μ0 is the permeability of free space.
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A typical Debye type spectrum is shown in Fig. 1a)where the loss, or
χ″(ω) component, displays a peak (at a frequency fmax), whose value
cannot be greater than χ0/2.

However, the Debye model assumes that the ferrofluid consists of
mono-dispersed particles, and as this is not the case, one would expect
the profile of a samples spectrum to differ from that of Fig. 1a). This is
illustrated in Fig. 1b), which shows the effect of incorporating a normal
distribution of radii, of standard deviation, σr, into the Debye model.
These results show the χ′(ω) component inclining from the vertical po-
sition, and the peak of the χ″(ω) component reducing as the absorption
curve become broader.

The magnetic moment of the particles may relax through either ro-
tational Brownian motion of the particle within the carrier liquid, with
relaxation time τΒ [6] or through the Néel mechanism, whereby the
magnetic moment must overcome the particles anisotropy energy bar-
rier and is known as the Néel relaxation process with relaxation time τΝ
[7].

The Brownian relaxation time τB is given by [6]

τΒ ¼ 4πr3η=kΤ ð6Þ

where r is the hydrodynamic radius of the particle, η is the dynamic vis-
cosity of the carrier liquid.

τB is related to the frequency fmax (Fig. 1) by the expression,

τB ¼ 1=2π f max ¼ 4πηr3=kT: ð7Þ

Thus by determining fmax from Eq. (7) we are enabled to obtain the
particle or aggregate size for the sample under investigation. The forma-
tion of aggregates [8,9,10] can arise due to the effects of short range van
der Waals attraction or by the effects of magnetic dipolar interactions
between particles [11].

In the case of the Néel relaxationmechanism, themagnetic moment
may reverse direction within the particle by overcoming an energy bar-
rier, which for uniaxial anisotropy, is given by Kv, where K is the anisot-
ropy constant of the particle. This reversal time may be described
approximately in terms of Brown's [12] expressions for high and low
barrier heights, as,

τN ¼ τ0σ‐1=2 exp σð Þ; σ ≥ 2
¼ τ0σ; σ bb 1:

ð8Þ

τ0 is a damping time having an often-quoted approximate value of
10−9 s and σ = Kv/kT.

Magnetic fluids have a distribution of particle sizes and have an ef-
fective relaxation time τeff [13], which in terms of τB and τN, is given by,

τeff ¼ τNτB= τN þ τBð Þ; ð9Þ

themechanismwith the shortest relaxation time being dominant.τeff is
related to the frequency fmax of the maximum of the χ″(ω) component,

by the expression,

τeff ¼ 1=2π f max: ð10Þ

In the case where τN NN τB,

τeff ¼ 1=2π f max ¼ τB ¼ 4πηr3=kT: ð11Þ

An indication of the spectrum of relaxation times likely to be en-
countered in a typical magnetic fluid is given in [14]. It is shown, as in
Fig. 2a), that, for particle sizes which range from 1.44 to 12.2 nm,
those with radii greater than 6 nm the dominant relaxationmechanism
is Brownian whilst those with radii less than 6 nm the Néel mechanism
is dominant.

Fig. 2b) is a plot of the corresponding values of fmax for the particle
sizes used together with three further particle sizes of 17, 22, and
28 nm, respectively; these latter three sizes being included in order to
cater for the possible presence of aggregation. The figure clearly shows
that Néel relaxation would be observed in the approximate frequency
range of 105 Hz upwards, whilst Brownian is the dominant mechanism
below 105 Hz.

For a distribution of particle sizes, a distribution of relaxation times,
τ, will exist and the Cole-Cole parameter,α [15], is a useful parameter in
determining the distribution of relaxation times. In the Cole-Cole case,
where the complex susceptibility data fits a depressed circular arc, the
relation between χ′(ω) and χ″(ω) and their dependence on frequency,
ω/2π, can be displayed by means of the magnetic analogue of the
Cole-Cole plot [15]. In the Cole-Cole case the circular arc cuts the
χ′(ω) axis at an angle of απ/2; α is referred to as the Cole-Cole param-
eter and is a measure of the particle-size distribution. The magnetic an-
alogue of the Cole-Cole circular arc is described by Eq. (12), where,

χ ωð Þ ¼ χ∞ þ χ0−χ∞ð Þ= 1þ iþωτð Þ1−α
h i

; 0 bα b 1 ð12Þ

which for α = 0, reduces to that of Eq. (4).

1.1. Field dependence

From the Langevin function for themagnetization of thefluid, Eq. (2)
for the samples presented here, an expression for the field dependence
of the frequency dependent susceptibility, χ(ω,Η), can bewritten as fol-
lows [16],

χ ω;Hð Þ ¼ χ0 1þ f Hð Þð Þ‐χ∞

1þ iωτeff
þ χ∞ ð13Þ

with,

1þ f Hð Þð Þ ¼ 3 1þ kT
mH

� �2

− coth2 mH
kT

� �" #
ð14Þ

Fig. 1. a) Debye type profile, plot of χ′(ω) χ″(ω) against ωτ. b) Debye type profiles (including plots in A) and normal distribution of particle radii, σr) of χ′(ω) and χ″(ω) against ωτ.
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