ELSEVIEI



### Journal of Molecular Liquids



# Are solubility parameters relevant for the solubility of liquid organic solutes in room temperature ionic liquids?



#### Yizhak Marcus

Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

#### ARTICLE INFO

#### ABSTRACT

Article history: Received 25 October 2015 Accepted 8 November 2015 Available online xxxx

Keywords: Liquid organic solutes Room temperature ionic liquids Solubility parameters Solubility prediction A database for the solubilities of (volatile) liquid organic solutes in (non-volatile) room temperature ionic liquids at 298 K (or thereabouts) was constructed in terms of the infinite dilution activity coefficients,  $\ln \gamma_i^{\infty}$ , from data in the literature. In most cases the fit of these data by the Hildebrand solubility parameter expression  $(V_i/RT)(\delta_{\rm Hi} - \delta_{\rm Hs})^2$  alone is unsuccessful, and in particular this expression cannot account for negative values of  $\ln \gamma_i^{\infty}$ . An (negative) entropic correction term related to the relative sizes of the solute and solvent that was suggested is generally inadequate to cause a better fit. The prediction of the solubilities of organic solutes in RTILs remains a challenge.

© 2015 Elsevier B.V. All rights reserved.

#### 1. Introduction

The solubility of volatile solutes (subscript <sub>i</sub>) in (the non-volatile) room temperature ionic liquids (RTILs, subscript <sub>s</sub>) is commonly reported in terms of the Henry constant  $H_{i(s)}$ , the mole fraction of the solute at saturation,  $x_i$ , at a (partial) pressure of the solute  $p_i$ :

$$H_{i(s)} = p_i / x_{i(s)}. \tag{1}$$

It is related to the widely reported infinite dilution activity coefficient (obtained from gas chromatography):

$$\gamma_{i(s)}^{\infty} = H_{i(s)}/p_i$$

where  $p_i^*$  is the vapor pressure of the pure liquid solute. Another measure of the solubility is the partition constant:

$$\log K_{i(s)} = \log \left( RT / \gamma_{i(s)}^{\infty} p_i * V_s \right) = \log \left( RT / H_{i(s)} V_s \right)$$
(3)

where  $V_s$  is the molar volume of the solvent. Values of  $\log K_{i(s)}$  are also widely reported, having been obtained from gas chromatography too. A database of  $\ln \gamma_{i(s)}^{\infty}$  values has been assembled in Table 1 [1–13] for 28 volatile liquid organic solutes, including aliphatic and aromatic hydrocarbons and polar organic compounds, pertaining to the 22 RTILs listed in Table 2. The RTILs are identified in Table 1 by their ordinal numbers in Table 2. Where required, values of  $x_{i(s)}$ ,  $H_{i(s)}$ , and  $\log K_{i(s)}$  have been

converted to  $\gamma_{i(s)}^{c}$  values according to the expressions (1), (2), and (3). The auxiliary data (including  $p_i^*$  and  $V_s$ , where employed, Table 3) pertain nominally to 298.15 K, and no corrections have been applied for solubility data reported at  $\approx$  303 K. The solubilities in terms of the mole fraction of the solute in the saturated solution are accordingly inversely proportional to the  $\gamma_{i(s)}^{c}$  values.

Several attempts of description of the solubilities of volatile solutes in RTILs in terms of the regular solution theory have been made [2,5, 14,15,16]. Lee [2] suggested that the solubilities of organic solutes in RTILs could be expressed as:

$$\ln \gamma_{i(s)}^{\ \infty} = (V_i/RT)(\delta_{Hi} - \delta_{Hs})^2 - correction \ terms \tag{4}$$

where the  $\delta_{\rm H}$  are the total Hildebrand solubility parameters and the *correction terms* pertain to the solute–solvent dispersion-, polar-, and hydrogen-bonding-interaction partial solubility parameters. The  $\delta_{\rm Hi}$  solubility parameters of the 28 solutes in the data base are well known [17] and those of the RTILs,  $\delta_{\rm Hs}$ , are discussed in the present paper. However, the required *correction terms* are generally not available.

A somewhat different approach was suggested recently by Wang et al. [16] and by Ge et al. [5] who set:

$$\ln \gamma_{i(s)}^{\infty} = (V_i/RT)(\delta_{Hi} - \delta_{Hs})^2 + \left[ \ln (r_i/r_s)^{2/3} + 1 - (r_i/r_s)^{2/3} \right]$$
(5)

where the (negative) term in square brackets is due to Kilic et al. [18], describing the entropic effects of the discrepancies in the van der Waals volumes  $r_i$  and  $r_s$  of the solute and solvent.

It is noted (Table 1) that for aliphatic hydrocarbons ln  $\gamma_{i(s)}^{\infty}$  is positive, of the order of a few units, for aromatic hydrocarbons it is generally still

E-mail address: ymarcus@vms.huji.ac.il.

#### Table 1

 $ln\gamma_i^{\infty}$  of the listed solutes in RTILs identified by their numbers in Table 2.

| Solute\RTIL        | 1    | 2     | 2a    | 3     | 3a    | 4     | 5     | 5a    | 6    | 7     | 8     | 9     | 10    | 10a   | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    |
|--------------------|------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Reference          | 1    | 2     | 3     | 1     | 4     | 1     | 1     | 4     | 5    | 6     | 1     | 7     | 1     | 4     | 8     | 9     | 4     | 7     | 10    | 11    | 12    | 12    | 11    | 13    | 12    | 13    |
| n-Pentane          |      |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       | 2.14  |       | 2.13  | 3.93  |       | 2.37  |       | 2.69  |
| n-Hexane           |      | 3.30  | 3.31  |       | 4.19  |       |       | 2.72  | 1.93 | 4.16  |       |       |       | 2.11  |       |       | 2.15  |       | 2.50  | 2.74  | 2.46  | 4.04  | 3.35  | 2.70  |       | 2.98  |
| n-Heptane          |      | 3.74  | 3.74  |       | 4.42  |       |       | 3.11  | 2.79 | 4.66  |       |       |       | 2.42  |       |       | 2.40  |       | 2.73  | 3.10  | 2.84  | 4.26  | 3.53  | 3.04  | 5.19  | 3.32  |
| n-Octane           |      | 4.18  | 4.21  |       | 4.76  |       |       | 3.51  | 3.48 | 5.13  |       |       |       | 2.79  |       |       | 2.78  |       | 2.88  | 3.51  | 3.23  | 4.35  | 3.77  | 3.40  | 5.60  | 3.72  |
| n-Decane           |      | 5.16  | 5.18  |       |       |       |       | 4.17  | 4.20 |       |       | 4.53  |       | 3.46  |       |       |       |       |       | 4.28  | 3.98  | 5.28  | 4.38  | 4.10  | 6.42  | 4.47  |
| c-Hexane           |      | 2.74  | 2.74  |       | 3.12  |       |       | 2.22  | 4.03 | 3.39  |       | 2.47  |       | 1.76  |       |       | 1.67  |       | 1.87  | 2.37  | 2.12  | 3.28  | 2.73  | 2.20  | 3.77  | 2.84  |
| Benzene            | 0.74 | 0.16  | 0.16  | 0.52  | 0.41  | 0.47  | -0.12 | -0.16 | 1.83 | 0.62  | 0.43  |       | -0.30 | -0.27 | 0.72  | 0.60  | -0.36 |       | -0.06 | 0.34  | -0.60 | 0.33  | -0.13 | -0.25 | 0.50  | -0.18 |
| Toluene            |      | 0.54  | 0.55  |       | 0.92  |       |       | 0.35  | 2.73 | 1.13  |       |       |       | 0.01  | 1.09  | 1.01  | 0.00  |       | 0.34  | 0.66  | -0.21 | 0.79  | 0.24  | -0.16 | 1.07  | 0.12  |
| Ethylbenzene       |      | 1.06  | 1.03  |       |       |       |       | 0.79  |      | 1.71  |       | 1.48  |       | 0.45  | 1.41  | 1.45  |       |       | 0.72  | 1.01  | 0.09  | 1.20  | 0.58  | 0.44  | 1.60  | 0.47  |
| o-Xylene           |      | 0.86  | 0.87  |       |       |       |       |       | 3.19 | 1.46  |       | 1.41  |       |       | 1.26  | 1.29  |       | 1.06  | 0.56  | 0.93  | -0.03 | 1.06  | 0.42  | 0.33  | 1.39  | 0.33  |
| m-Xylene           |      | 0.99  | 1.04  |       |       |       |       |       | 3.48 | 1.69  |       | 1.63  |       | 0.34  | 1.43  | 1.45  |       | 1.23  | 0.70  | 1.00  | 0.03  | 1.28  | 0.50  | 0.40  | 1.59  | 0.48  |
| p-Xylene           |      | 1.00  | 0.96  |       | -0.22 |       |       |       | 3.41 | 1.62  |       | 1.54  |       | 0.35  | 1.42  | 1.41  |       | 1.29  | 0.68  | 1.01  | 0.06  | 1.20  | 0.49  | 0.37  | 1.60  | 0.39  |
| Methanol           |      | 0.23  | 0.21  |       | 0.10  |       |       | 0.25  |      | -1.14 |       |       |       | 0.39  | -2.30 | -0.99 | -1.20 |       | -1.35 | 0.70  | 1.25  | -0.35 | 0.55  | 0.50  | -1.13 | 0.18  |
| Ethanol            |      | 0.52  | 0.52  |       |       |       |       | 0.62  |      | -0.58 |       |       |       | 0.74  | -1.56 | -0.51 | -0.69 |       | -0.97 |       | 1.24  | 0.05  | 0.79  | 0.71  | -0.52 | 0.51  |
| n-Propanol         |      | 0.84  | 0.87  |       |       |       |       | 1.02  |      | -0.26 |       | 0.91  |       | 0.97  | -1.08 | -0.34 |       | 1.29  | -0.87 | 1.28  | 1.60  | 0.32  | 1.02  | 0.95  |       | 0.74  |
| i-Propanol         |      | 0.77  | 0.78  |       |       |       |       | 0.73  |      |       |       |       |       | 0.64  |       | -0.20 |       | 0.64  | -0.82 | 1.14  | 1.39  | 0.23  | 0.94  |       | -0.04 | 0.67  |
| n-Butanol          |      | 1.21  | 1.29  |       |       |       |       | 1.16  |      |       |       |       |       | 1.07  |       | -0.04 |       | 0.44  |       | 2.07  | 1.93  | 0.67  | 1.46  | 1.29  | 0.24  | 1.07  |
| Diethyl ether      |      |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |       | 0.55  | 0.34  |       | 1.11  | 0.76  | 0.08  | 0.86  |
| Tetrahydrofuran    |      |       |       |       | 0.34  |       |       |       | 1.68 |       |       | 0.98  |       |       | 0.67  | 0.65  | -0.36 | 0.61  | 0.03  | -0.22 | -0.96 | 0.25  | -0.30 | -0.49 | 0.65  | -0.53 |
| 1,4-Dioxane        |      |       |       |       |       |       |       |       |      |       |       | 0.81  |       |       | 0.65  | 0.30  |       | 1.18  |       | -0.10 | -0.93 | 0.07  | -0.39 | -0.53 | 0.38  | -0.78 |
| Acetone            | 0.19 | -0.94 | -0.94 | -0.08 |       | -0.92 | -0.94 | -1.00 | 1.46 | 0.10  | -0.26 |       | -0.99 | -1.06 | 0.52  | 0.26  |       | 0.11  | -0.17 |       | -1.40 |       | -0.72 | -0.82 | 0.30  | -0.81 |
| 2-Pentanone        |      |       | 0.72  |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |       |       | 0.05  |       |       |       |       |       |
| Ethyl acetate      |      | -0.14 |       |       | 0.59  |       |       |       | 2.54 | 1.08  |       | 1.37  |       |       | 0.97  | 1.05  | -0.10 | 0.63  | 0.50  |       |       |       |       |       |       |       |
| Dichloromethane    |      | -0.03 | -0.03 |       |       |       |       |       | 0.85 | -0.78 |       | -0.25 |       |       | -0.45 | -0.69 |       | -0.42 | -1.14 | 0.18  |       |       |       |       |       |       |
| Chloroform         |      | -0.06 | -0.06 |       |       |       |       |       | 0.75 | -1.27 |       | -0.63 |       | -0.42 | -2.53 | -1.24 |       | -0.76 | -1.77 | 0.17  |       |       |       |       |       |       |
| Tetrachloromethane |      | 1.18  | 0.68  |       |       |       |       |       | 2.72 | 0.74  |       | 1.52  |       |       | -0.48 | 0.77  |       | 0.85  | 0.15  | 0.77  |       |       |       |       |       |       |
| Acetonitrile       |      | -0.82 | -0.81 |       |       |       |       | -0.74 | 0.67 | -0.51 |       | 0.66  |       | -0.76 | 0.01  | -0.14 |       | -0.27 | -0.51 | -0.35 | -1.14 |       |       |       |       |       |
| Pyridine           |      |       |       |       |       |       |       |       |      |       |       |       |       |       |       |       |       |       |       |       | -0.90 |       |       | -0.69 | 0.57  | -0.71 |

Download English Version:

## https://daneshyari.com/en/article/5410217

Download Persian Version:

https://daneshyari.com/article/5410217

Daneshyari.com