
A fragmentation aware High-Level Synthesis flow for low power
heterogenous datapaths

Alberto A. Del Barrio a,n, Seda Ogrenci Memik b, Marı́a C. Molina a, José M. Mendı́as a, Román Hermida a

a Department of Computer Architecture and Automation, Computer Science Faculty, Complutense University of Madrid, José Santesmases s\n, 28040 Madrid, Spain
b Department of EECS, Tech. Building, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States

a r t i c l e i n f o

Article history:

Received 30 May 2011

Received in revised form

3 February 2012

Accepted 20 February 2012
Available online 28 February 2012

Keywords:

Low power

Area

High-Level Synthesis

a b s t r a c t

State of the art multi-objective synthesis flows use to degrade some parameters of the circuit while

trying to optimize the target one. This paper addresses the power reduction problem in heterogeneous

datapaths, while keeping a similar area and execution time with respect to the baseline case. Our

specific approach first diminishes the area via fragmentation techniques and afterwards it gives it back

with the introduction of Low Power Functional Units (LP-FUs) that occupy more area than their

corresponding non-low power counterparts. Furthermore, a fragmentation algorithm more suitable for

power reduction is proposed. Results show that it is possible to diminish power by 27% on average (49%

in the best case).

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The power dissipated by a circuit can be optimized at different
levels of abstraction. However, the potential impact of strategic
decisions made at the higher levels is likely to be most significant
[1,2]. High-Level Synthesis (HLS) techniques have therefore
tackled power minimization in various ways. Majority of these
techniques focuses on the dynamic power consumption. Although
dynamic power still dominates the total power envelope, leakage
power is becoming an increasingly larger fraction of total power.
Leakage optimizations are generally addressed through lower
level design optimizations such as dual threshold gates or reverse
body biasing [3,4]. HLS also has some indirect impact on power,
for example by minimizing the total amount of resources
employed in a datapath. Dynamic power, on the other hand, is a
function of switching activity, supply voltage level, and the
switched capacitive load. Various HLS techniques address these
parameters for optimization. However, those focused on reducing
voltage [19] or frequency [20], require significant changes in the
design process and they impact technology parameters. Alterna-
tively, other techniques only aim to minimize switching activity
or the effective amount of resources required without the need to
impose any limitations on circuit and technology parameters. For
instance, binding operations with correlated switching activity on
the same resource in consecutive cycles diminishes switching

activity [21]. However, this may not be sufficient for modules
composed of a large amount of logic, e.g. a combinational multi-
plier. Internal signals within such a complex component can
behave differently depending on the specific implementation,
even though consecutive inputs supplied to the component at
the primary ports are correlated.

Similar to some aforementioned HLS techniques, fragmenta-
tion [16–18] would have an indirect impact on power; mainly
thanks to the fact that the total effective amount of hardware
used at a given clock cycle is reduced. Useless switching activity is
produced when executing a narrow operation in a bigger FU. This
is the case of heterogeneous specifications, where different sizes
and data types are taken into account. Traditional HLS allocation
techniques select FUs able to execute the widest operations in the
specification and hence, there will be some wasted FU parts when
computing narrower operations. Thereby, removing these useless
parts is a way of reducing both area and power. Fragmentation
techniques have been developed in order to tackle this problem.
Fragmentation mainly aims to allocate a set of functional units
with various width configurations that can execute operations in
the specification. The goal is to minimize the total amount of
hardware used and in this process some wide operations can be
divided into fragments such that they can be executed on several
narrower FUs. Scheduling techniques have been proposed to
accompany fragmentation, where fragments of the same opera-
tion could be rescheduled in non-consecutive cycles [17,18]. As a
consequence, there will not be any FU executing smaller-sized
operations.

Fragmentation and associated scheduling techniques men-
tioned above indeed help reduce total area. However, as the

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2012.02.005

n Corresponding author.

E-mail addresses: albertodbg@fdi.ucm.es (A.A. Del Barrio),

seda@eecs.northwestern.edu (S.O. Memik), cmolinap@dacya.ucm.es (M.C. Molina),

mendias@dacya.ucm.es (J.M. Mendı́as), rhermida@dacya.ucm.es (R. Hermida).

INTEGRATION, the VLSI journal 46 (2013) 119–130

www.elsevier.com/locate/vlsi
www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2012.02.005
mailto:albertodbg@fdi.ucm.es
mailto:seda@eecs.northwestern.edu
mailto:cmolinap@dacya.ucm.es
mailto:mendias@dacya.ucm.es
mailto:rhermida@dacya.ucm.es
dx.doi.org/10.1016/j.vlsi.2012.02.005


techniques presented in [17,18] are highly focused on diminish-
ing this parameter, they can produce over-fragmented datapaths.
As the wiring complexity affects power consumption [27], over-
fragmentation must be reduced. Moreover, in order to minimize
the hardware wastage these techniques allow the transformation
of products into additions, which can prevent the introduction of
efficient low-power multipliers as the ones presented in [5–9].

In this paper, we propose a new flow for scheduling, allocation
and module selection for heterogeneous datapaths to explicitly
address power optimization instead of relying indirectly on area
reduction for power improvement. Besides, to lessen the above-
mentioned adverse impacts of existing fragmentation-based
flows on power we propose to maintain the same scheduling
after fragmenting, and not to allow the transformation of pro-
ducts into additions. In this way, power will be further reduced, in
spite of not diminishing area so much as in previous works
[17,18]. We start out by utilizing the main principle of fragmen-
tation as a tool for minimizing the hardware utilized per cycle
[17]. However, we do not allow to schedule fragments of the same
operation in different csteps, as practiced by prior techniques
[18]. FUs are fragmented, but operations are executed in a set of
linked FUs in the csteps when they were originally scheduled
[16]. In this way datapaths will be less fragmented and will keep a
similar execution time to the common case, which combined with
the power reduction will produce an overall energy decrease.
Furthermore, the allocation algorithm is complemented by the
prior application of a Fragmented-Aware Scheduling (FAS), which
will schedule operations such that the allocation process can take
the maximum advantage of. In other words FAS will help the
allocation stage to reduce the number and size of the required
resources as much as possible.

Next, we observe that the area savings achieved by fragmenta-
tion can be traded-off systematically for power reduction. Our
specific approach is to introduce multiple choices for FUs with
power/area trade-offs for different fragmentation and allocation
styles. A module selection algorithm has been developed, which
pursues a trade-off between area and power consumption for
fragmented datapaths under total area constraints. Our experi-
mental results show that it is possible to reduce power by 27% on
average (49% in the best case).

The rest of the paper is organized as follows: Section 2
discusses the related work, Section 3 presents an example in
order to motivate our techniques, Section 4 explains in more
detail our algorithms, Section 5 describes the area and power
models, and the FU library used in the module selection algorithm
and finally Sections 6 and 7 present our experimental results and
final conclusions.

2. Related work

Usually in datapaths multipliers are the biggest and most
power consuming modules. Previous works [5–9] try to minimize
power consumption produced by multipliers. Authors propose to
reduce switching activity in the partial product matrix with by-
passing logic in one dimension [5,7,8], two dimensions [6], or
using 2’s complement for some operands [9]. All these works
reduce switching activity inside the multipliers for diminishing
power around 20–30% at the expense of an area increase that
ranges between 10 and 25%, except for one case [6] where due to
the bidimensional bypassing a significant 75% power reduction is
achieved, but with 125% area overhead. These approaches that
sacrifice a piece of area for diminishing power are becoming
widespread and also single cells [30] or complete adders present a
low power version [10], reducing 55% power with 8% area
penalty. Note that these LP-FUs present a similar or even lower

delay than the corresponding non-LP-FUs. Therefore, achieving
the same latency as in the common implementation will be
enough for complying with the baseline execution time.

A similar LP approach is performed by Choi et al. in [26],
obtaining 24% average power reduction at the expense of 34.5%
area increase. They present some LP-FUs that perform partially
guarded computation. The FUs described in [26] are divided in
two halves: the Most Significant Part (MSP) and the Least
Significant Part (LSP). The MSP can operate conventionally, when
the non-signed parts of the operands are large enough, or
otherwise simply extend the sign, thus reducing the switching
activity. The location and width of these parts are determined
statically with an algorithm.

Another approach [11] proposes to bind operations that share
some operands to the same FU and in consecutive csteps, thus
reducing switching activity. Nevertheless, as this technique can
only be applied to a specific subset of operations, it is quite
restricted. In [12] authors present a methodology for reducing
area, power or energy, but there is always one target function at a
time. It is not clear how several parameters, e.g. area and power
can be combined. Remaining parameters often suffer significant
degradation while trying to reach optimality in the target metric.
Area overhead when reducing power or energy exceeds 50% for
some cases, and 25% on average. In [13] authors tradeoff area and
power by different clock selections, but they relax the timing
constraint T, producing circuits with 1.5–3.5T. More recently, new
techniques considering multi-objective genetic algorithms
[28,29] have been presented. Genetic algorithms deal efficiently
with the problem of optimizing simultaneously several para-
meters. However, these works do not take into consideration
the possibilities that both fragmentation and LP-FUs offer.

In [14,15] authors propose to customize DSP or FPGA multi-
pliers depending on the constants of the applications, obtaining
area, power and latency reductions. This idea is more suitable for
structures with abundant resources such as FPGAs and DSPs. This
is not usually the case of ASICs, where datapaths must be highly
optimized in order to comply with the designer constraints.
Besides, this approach creates highly instruction-specific FUs.
However, our objective is to use non-specific FUs, because the
instruction-specific ones will diminish FU sharing and therefore it
could introduce some additional modules, with the corresponding
area and power penalties.

On the other hand, fragmentation algorithms have been
proposed [16–18] to reduce area. These algorithms perform some
transformations over the DFG in order to diminish the hardware
waste due to the execution of different sized operations over the
same FU. That is, if operations are fragmented it is possible to
generate a DFG where the FUs are not wider than the operations
that they are executing. Hence, the inclusion of LP modules in the
design flow complements the application of fragmentation tech-
niques, because LP modules introduce some area overhead in
exchange for some power saving, while maintaining cycle time
and latency constraints. However, the area gain produced by
fragmentation should be traded-off in a systematic way [31].

Some of the aforementioned fragmentation algorithms [17,18]
are especially oriented to diminish area. Nevertheless, the exces-
sive application of fragmentation in order to take advantage of the
cycle time slack, and thus reuse FUs as much as possible, can
increase the wiring complexity, which is damaging from the
power point of view [27]. The appearance of many small FUs is
not uncommon in these works. Besides, the techniques presented
in [17,18] allow the transformation of products into additions for
increasing FUs reuse too, which can prevent the introduction of
efficient low-power multipliers as the ones presented in literature
[5–9]. Hence, executing all the fragments of every operation in the
same csteps as the corresponding non-fragmented operation in

A.A. Del Barrio et al. / INTEGRATION, the VLSI journal 46 (2013) 119–130120



Download English Version:

https://daneshyari.com/en/article/541027

Download Persian Version:

https://daneshyari.com/article/541027

Daneshyari.com

https://daneshyari.com/en/article/541027
https://daneshyari.com/article/541027
https://daneshyari.com

