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This work deals with the formation of a spherical cavity in water along the isotherm at 298 K. A striking effect of
increasing pressure was found on the radial distribution functions obtained by Monte Carlo simulations, with
significantly different behaviors observed when increasing the cavity radius at 8000 atm and 1 atm. At a fixed
cavity radius, a pressure increase up to 10,000 atm leads to increased hydration structure. At a constant high
pressure, structure is maintained even increasing the cavity radius, while it is lost at atmospheric pressure. Particular
Keywords: focus is on the value at contact, G(r), the central quantity in Scaled Particle Theory that is related to the derivative
Cavity with respect to the radius of the work required to form the cavity. Within the limit of very small radii, exact condi-
SPT tions were applied to these two quantities. This allowed us to readily determine, at any pressure along the isotherm,

Simulations the parameters of a simple model used to compute the excess chemical potential associated with the hydration of a
Pressure hard sphere. This was made possible thanks to heuristic models used to describe how the number density of water
Hydration changes along the isotherm and how the second moment of water distribution depends on the first moment. Use

Distribution moments was also made of additional information on a cavity of molecular size. Apart from the dependence on pressure of

hydrophobic solvation, this work also concerns calculation of the so-called cavitation contribution to the free energy

of solvation when this is computed within implicit solvent models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

According to thermodynamics [6,5], excess chemical potential or
pseudochemical potential [6] expresses how the free energy of the system
changes as a solute molecule is added to the solvent at a fixed position. For
a hard-sphere solute-solvent potential, at constant T, this quantity is
equal to the reversible work necessary to form a cavity in the solvent
[25,30,8,3]. The translation kinetic energy of the solute is added to obtain
the chemical potential, from which other important thermodynamic
quantities can be computed from derivatives with respect to state
variables, such as pressure and temperature [6,5]. Dependence on these
variables of hydrophobic hydration and hydrophobic interactions has
received particular interest in biochemistry, because of their relevance
in the folding of proteins [6,3]. Due to the complexity of these systems,
the mechanism of this process is still under discussion [27,7]. However,
important insight has been provided into this field by the study of the
excess chemical potential computed for simple modeled hydrophobic
solutes [11,15,21]. Using information theory, Hummer et al. [15] studied
small aggregates of methane in water over a wide range of pressure
observing that these are destabilized by increasing pressure. From this
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observation, which is consistent with simulation and experimental
results, they concluded that pressure denaturation of a protein involves
incorporation of water into the protein.

This work studies the pressure dependence of the excess chemical
potential associated with the insertion of hard-sphere solutes at infinite
dilution in water along the isotherm of 298 K. A purely repulsive potential
can be used to model interactions between a hydrophobic solute and
water. However, it is also important for the computation of the so-called
“cavitation contribution” to the free energy of solvation within polarizable
continuum models [31,8] as the solute is enclosed in a molecular cavity
defined by the union of spheres. When using these methods the focus is
on the quantum treatment of the solute, and most of the computational
time is spent for the electrostatic contribution [1], and, depending on
the method used, for the dispersion contribution [2]. It is in this context
that it is useful to develop simple heuristic expressions in order to
compute thermodynamic quantities related to the solvation process of
these simple modeled solutes [8,10].

At infinite dilution conditions, interactions between solute molecules
can be neglected and only solute-solvent interactions give a contribution
to the excess chemical potential. This can be computed using a coupling
parameter method [13], which requires information on how the solvent
distribution function changes from the initial state of pure solvent to the
final state in which the solute-solvent interaction is completely coupled.
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This method implies the study of “intermediate states” which are gener-
ally unrealistic. When applied to a hard-sphere solute-solvent interaction,
the solute insertion process is equivalent to scaling the radius of a cavity
from zero up to a final contact radius, r, as shown in the original paper
of Scaled Particle Theory (SPT) [25]. Thus, our interest in the formation
of a cavity in a solvent is extended to such small cavities that they cannot
host any real solute.

Within SPT [25,30,3], the excess chemical potential associated with
cavity formation is related to the probability that no centers of the solvent
molecules will be found in the spherical region defined by the contact ra-
dius. On the basis of statistical mechanics, this probability is expressed in
terms of pure solvent quantities that can be computed from the number
density and integrals involving many-particle correlation functions.
These integrals define the second and higher moments of the pure solvent
distribution functions and can be written in terms of probabilities that ex-
actly n centers of the solvent molecules can be found in the cavity volume
[25]. As specified in the literature [25,14], the excess chemical potential
written in terms of moments is of general validity and can be applied to
cavities of an arbitrary shape and using a realistic model potential for in-
teractions between solvent molecules. However, as only the first two mo-
ments are easily available, its application is limited to very small cavities
so that n<2 or requires the computation of modeled probabilities. These
can be computed within an information theory based on the first two mo-
ments, as demonstrated by Hummer et al. [ 14]. Here, we work within SPT
and apply the general relation based on probabilities (Eq. 3.11 of Ref. [25])
only to such a small sized-cavity that the excess chemical potential is di-
rectly computed from the first two moments. SPT conditions are then ap-
plied at an appropriate radius close to the extreme of the range where the
contribution of higher moments vanishes. These conditions involve deriv-
atives of the excess chemical potential with respect to the cavity radius.

In order to facilitate these calculations and apply SPT along the
isotherm we describe the two first moments of water for spherical vol-
umes as a function of radius and pressure. Such descriptions make use
of a simple relation between the first moment and the water number den-
sity [14], which was modeled along the isotherm. This was also used in a
heuristic expression proposed here to compute the second moment from
the first moment using a modified Poisson distribution (see Appendix A).

Scaling the radius from small to larger sized-cavities so that a real
solute can be hosted in, the approximate SPT expression [22,23] or the
more flexible expressions based on the thermodynamics of surfaces
[28] are generally used [24,8,10]. The effect of pressure on parameters
entering such expressions has been little explored until now. At fixed
conditions of P and T, such parameters are preferably determined by
fitting procedures. However, a complete study of the effect of pressure
on the thermodynamics of cavity formation would require a great num-
ber of very expensive simulations.

Here, we test these simple models at a very high pressure by
comparison with simulation results. We show that a less expensive
parametrization based on exact relations [25] gives results which are
in agreement with those obtained by fitting.

This was made possible by the use of a relatively simple scheme
formulated within the framework of SPT, with a limited number of condi-
tions on the central function G(r), which is defined by the contact value of
the cavity-solvent radial distribution function (rdf). As noticed above,
these conditions were applied within the limit of a very small cavity,
but some information on a molecular-sized cavity was employed in the
parametrization. Differently from the approximate SPT expression, this
is in fact necessary when using more flexible simple models.

2. Calculation
2.1. Excess chemical potential and G(r)
According to statistical mechanics [25], the excess chemical potential

of a hard-sphere solute, here denoted by I, can be computed from the
probability that an empty region can be found in the solvent and it

is written in terms of moments of the solvent distribution. Within
the limit of a very small cavity, this relation involves only the first
two moments,

w = —kgTIn 1—<n>+% <n(n—1)> (1)

where n is the instantaneous number of molecular centers in the
pure solvent contained in a sphere of radius r, whose average <n>
can be obtained from the number density p [14]. The third term in
brackets gives the average number of pairs in the same volume and
can be obtained from integrals involving the pair distribution function
[25,14]. The expression above is valid for cavity volumes for which the
contribution of higher moments vanishes (n<2).

For larger cavities, the excess chemical potential is computed with a
simple model formulated within the thermodynamics of surfaces [28].
We adopt the most common division [30,4] related to a cavity of radius
r, which here defines the accessible surface and the exclusion volume to
oxygen nuclei positions of water molecules. Namely,
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where 7y has the dimension of a surface tension and f.(r) is a function
describing curvature corrections, which equals 1 for a cavity in the
limit of an infinite radius. The average density of solvent centers on
the cavity surface is given by p G(r), and G(r) is related to t* by the
important relation derived from SPT [25,24],

1 dur
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As remarked by Reiss et al. [25], ¢ equals the reversible work which
is expended in the formation of the cavity. Given that this process is
equivalent to the coupling of a hard-sphere interaction potential with
contact distance r, the value of the rdf for the solvent centers excluded
from the spherical region coincides at r with G(r).

Thus, as pair correlation functions are commonly calculated in
simulations, this relation is very useful to validate simple models used
to describe the radial dependence of f. in Eq. (2). The general form of
this model leads to the following simple expression for the derivative of
W with respect to r,
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where & and « are parameters entering the curvature correction f.(r)
[24,10].

2.2. Solvent compressibility

The coefficient of isothermal compressibility can be derived from
density in accordance with the thermodynamic definition:
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or from volume fluctuations in the NPT ensemble, namely,
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