

Contents lists available at ScienceDirect

Journal of Molecular Liquids

journal homepage: www.elsevier.com/locate/molliq

Spectroscopic and structure investigation of the molecular complexes of tris(2-aminoethyl)amine with π -acceptors

Hamdy S. El-Sheshtawy ^{a,b,*}, Mohamed M. Ibrahim ^{a,d}, Mohamed R.E. Aly ^{c,d}, Maged El-Kemary ^{a,b}

^a Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt

^b Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt

^c Chemistry Department, Faculty of Applied Science, Port Said University, Port Said 42522, Egypt

^d Chemistry Department, Faculty of Science, Taif University, Taif, Saudi Arabia

ARTICLE INFO

Article history: Received 29 April 2015 Received in revised form 17 October 2015 Accepted 4 November 2015 Available online 6 December 2015

Keywords: Tris(2-aminoethyl)amine π-Acceptors Hydrogen bond X-ray crystal structure Theoretical calculations

ABSTRACT

The intermolecular charge transfer CT-complexes of tris(2-aminoethyl)amine (TREN) with different π -acceptors such as picric acid (PIC), o-chloranil (CHL) and tetracyanoquinolines (TCNQ) were investigated in both solid and liquid phase. Spectroscopic techniques, such as FT-IR, ¹H NMR, ¹³C NMR, and UV-vis, were used to characterize the molecular complexes. Spectral data, for example, formation constants, molar extinction coefficient, standard free energy, and ionization potentials for the complexes were calculated for the 1:1 molecular CT-complexes. Exploring the single crystal of TREN/PIC, grown by slow evaporation technique from methanol solution at room temperature, shows that CT-complex stabilized by two noncovalent interactions, namely, hydrogen bond and dipole–dipole interactions. In addition, the structure of tris(2-aminoethyl)amine and CHL and TCNQ complexes were investigated by DFT calculations at B3LYP/6-311 + +G(d,p) level of theory.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Compounds that involve charge-transfer (CT) process are ubiquitous in both biological systems [1] and optoelectronic devices [2]. For example, the CT interactions are responsible for stabilizing the organic molecules that intercalate between DNA bases, which can be used for cancer therapy [3]. In addition, CT process plays a key role in biological energy conversion in particular photosystems I and II (PSI and PSII) [4,5]. On the other hand, CT complexes are widely used in material science applications such as fabrication of layer-by-layer films [6], preparation of supramolecular crystals [7], and supra-amphiphiles [8]. The driving forces for the CT complex formation have always been intriguing to the researchers.

Noncovalent interactions, in particular hydrogen bonding (HB), have been a cornerstone in the design of such molecular complexes, which was firstly introduced in 1970 by O. Hassel in his Nobel lecture. Noncovalent interactions, such as electrostatic (ion–ion, ion–dipole, and dipole–dipole), π – π stacking interactions, cation– π interactions, van der Waals forces, hydrophobic interactions, and hydrogen bonding, play key role in the self assembly of supramolecular systems [9,10]. In particular, hydrogen bond (HB) attracts special interest due to the importance in crystal engineering, drug delivery, and eventually in biological systems [11–13]. In analogy to HB, halogen bonding was recently introduced to play important part in the assembly of supramolecular systems [14] as well as CT molecular complexes [15,16].

The stability of the CT complexes depends on the strength of the donor compounds, which based on different organic and inorganic molecules. For example, imidazoles [17], thiazoles [18], and pyrimidines [19] derivatives have been widely used to construct the scaffold of donors. Herein, we extended the CT donor skeleton with tris(2-aminoethyl)amine (TREN, Scheme 1), which has been widely used as scaffold for the synthesis of 3-fold symmetric tripodal ligands [20], and metal binding ligands for both transition metals [21-25] and main group elements [26]. In such complexes, noncovalent interactions reported to be the deriving forces, for example, HB was the main binding force in the synthesis of water-soluble chelators from TREN derivatives that show promising contrast agents in magnetic resonance imaging (MRI) applications [27, 28]. In addition, HB plays the key role for the sulfonamide and amide derivatives of TREN to facilitate the phospholipid translocation across vesicle and erythrocyte membranes [29]. In this work, we are investigating the molecular CT-complex between tris(2aminoethyl)amine (TREN) and different acceptors such as picric acid (PIC), o-chloranil (CHL), and tetracyanoquinodimethane (TCNQ), in order to study the role of noncovalent interactions in complex stabilization. Theoretical calculations (DFT) using B3LYP/6-311 + +G(d,p) level of theory were used to corroborate the experimental results.

^{*} Corresponding author at: Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt.

E-mail address: h.elsheshtawy@fsh.kfs.edu.eg (H.S. El-Sheshtawy).

Scheme 1. a) Structure of tris(2-aminoethyl)amine (TREN), b) electrostatic potential map of TREN, B3LYP/6-311 ++G (d,p), the red to blue color spans - 23.7 to + 23.07 kcal/mol⁻¹.

2. Experimental

2.1. Materials and solutions

Tris(2-aminoethyl)amine (TREN) was supplied from Sigma-Aldrich (Germany) and used without further purification. All solvents were of spectral grade (BDH). The stock solutions of the donor (TREN) and acceptors (picric acid (PIC), 2,3,5,6-tetrachloro-1,4-benzoguinone (CHL), and tetracyanoquinodimethane (TCNQ) were freshly prepared in a dry and deoxygenated solvent prior to use in order to avoid any contamination.

2.2. Instruments

Absorption spectra were scanned on a Shimadzu 2401PC spectrophotometer using 1 cm matched quartz cells. Temperature control was achieved using a Julabo F30 ultrathermostat with an accuracy of ± 0.05 °C. Infrared spectral measurements (FT-IR) for the free donor and the CT-complex were recorded in KBR pellets using FT-IR Prestige-21 Shimadzu, in the range of 400–4000 cm⁻¹. The ¹HNMR spectra were recorded by 200 and 300 MHz Varian EM 390 spectrometer; chemical shifts are reported in ppm with TMS as an internal standard and are given in δ units.

Crystallographic data of the TREN-PIC were collected on a Smart CCD diffractometer of Bruker AXS using Mo Ka radiation. The crystal does not show significant intensity loss through data collection. Lorentz-Polarization corrections were performed by SAINT [30]. Absorption corrections were made by using SADABS [31]. The structure was solved by direct or Patterson methods using SHELXS-97 [32] to find the position of heavy atoms. Other non-hydrogen atoms were located by Fourier syn- theses and refined using SHELXS-97. The least-squares refinements were performed using all independent reflections by the full matrix on F2. All non-hydrogen atoms were refined anisotropically. X-ray diffraction study was carried out using XRD-6000 (SHIMADZU). The X-ray was detected using a fast counting detector based on silicon strip technology. The crystal structure and lattice parameter were analyzed by Bragg's law, $2dsin\theta = n\lambda$ and particle size is calculated by Debye Scherer's formula, t = $0.9 \lambda/B \cos \theta$ [33,34].

2.3. Synthesis

A hot methanolic solution (25 mL) of each acceptor (3.0 mmol): PIC (69 mg), CHL (74 mg), or TCNO (61 mg) was added to a solution of TREN (1.0 mmol, 149 L) in 10 mL of methanol. Transparent solutions was obtained in each case, which was kept standing for 5 days. A yellow, Brawn and black crystals were deposited for the CT complexes of TREN/PIC, TREN/CHL, and TREN/TCNQ, respectively, which were washed and re-crystallized from methanol.

CT complex of TREN/(PIC)₃: For C₂₄H₂₄N₁₃O₂₁·CH₃OH (862.57): calcd. C, 34.81; H, 3.27; N, 21.11; found C, 33.99; H, 3.06; N, 21.32. IR (KBr): (cm⁻¹): 3058 (br, C–H_{Ar}), 2944 (br, C–H_{aliph}), 2734 (w, NH₃⁺), 1604, 1479 and 1427 (vs, skeletal C = C), 1540 (vs, NO_{2asy}), 1328 (vs, NO_{2sv}), 1260 ((vs, C-O), 1157 (m, C-NH_{str}), 916 (C-H_{def}), and 704 (N–H_{wag}). ¹H NMR (400 MHz, DMSO- d_6): δ 8.59 (s, 6 H, 3H-3_{Ph}, 3H-5_{Ph}), 7.56 (br.s, 3H, 3 O-H), 2.91 (br.s, 6H, 3NH₂), 2.61 [m, 12H, N($CH_2CH_2NH_2$)₃]; ¹³C NMR: δ 161.50 (3 C-1_{Ph}), 142.20 (3 C-2_{Ph}, 3 C-6_{Ph}), 124.60 (3 C-3_{Ph}, 3 C-5_{Ph}), 124.30 (3 C-4_{Ph}), 51.60 [N(CH₂)₃-], 36.40 ppm (3 -CH₂NH₂).

CT complex of TREN/(CHL)₃: Anal. For C₁₂H₁₈N₄O₂Cl₄ (392.11): calcd. C, 36.67; H, 4.63; N, 14.29; Found C, 35.85; H, 4.72; N, 13.98. IR (KBr): (cm⁻¹): 3211(br, N-H_{str}), 2944 (br, C-H_{aliph}), 1737, 1654 (m, C=0), 1005 (C-Cl). ¹H NMR (400 MHz, DMSO-d₆): 8.05-7.93 (m, 3 H, OH⁺), 3.86 (br.s, 3 H, 3NH⁻), 2.88 [m, 6 H, N-CH₂-]; 2.62 [m, 6 H, N–CH₂.

CT complex of TREN/(TCNQ)₃: Anal. For C₄₂H₃₀N₁₆·2CH₃OH (822.89): calcd. C, 64.22; H, 4.65; N, 27.23; Found C, 63,43; H, 4.82; N, 26.91. I R (KBr): (cm⁻¹): 3243 (br, N-H_{str}), 3037 (br, C-H_{olif}), 2828 (br, C-H_{aliph}), 2170 (s, C≡N_{uncomplexed}), 2115 (vs, C≡N_{complexed}),

Table 1
Crystal data and structure refinement of the TREN-Picric.a, b

Compound	TREN-PIC
Empirical formula	$C_{25}H_{24}N_{13}O_{23}$
Formula weight, g/mol	874.535
Temperature/K	298
Crystal system	Triclinic
Crystal color	Yellow
Wavelength/Å	0.71073
Space group	P − 1
a/Å	8.4224 (2)
b/Å	12.5440 (3)
c/Å	18.4015 (5)
$\alpha/^{\circ}$	72.0793 (12)°
β/°	83.4136 (10)°
$\gamma/^{\circ}$	72.4234 (10)°
Volume/Å3	1762.94 (8)
Z	2
$D_{calc}/(g/cm^3)$	1.648
Absorption coefficient	None
F(000)	890
Crystal size/mm	
→ range for data collection/°	2.910-27.485°
Reflections collected	12,068
Independent reflections	9448
R(int)	0.030
Observed $(I > 2 \Leftrightarrow (I))$	3151
Goodness-of-fit on F2	1.17
$R[I > 2 \Leftrightarrow (I)]^a$	0.065
wR (all data) ^b	0.1180

^a $R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|.$ ^b $R_W = [\Sigma w (F^2 - F^2)^2 / \Sigma w (F^2)^2]^{1/2}.$

Download English Version:

https://daneshyari.com/en/article/5410455

Download Persian Version:

https://daneshyari.com/article/5410455

Daneshyari.com