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This article investigates themagnetohydrodynamic (MHD) squeezing flow of nanofluid over a porous stretching
surface. Constitutive expressions of viscous fluid are employed in the mathematical formulation. Brownian mo-
tion and thermophoretic diffusion of nanoparticles are taken into account. Fluid is electrically conducted in the
presence of an applied magnetic field. The induced magnetic field is neglected for a small magnetic Reynolds
number. Appropriate transformations yield a coupled nonlinear ordinary differential system. The resulting non-
linear system is solved successfully. Graphs are plotted to examine the impacts of physical parameters on the ve-
locity, temperature and nanoparticle concentration distributions. Skin friction coefficient, Nusselt and Sherwood
numbers are analyzed numerically.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Squeezingflowbetween parallel walls has attracted recent scientists
and engineers. Such interest, in fact is due to the occurrence of squeez-
ing flow in the engineering applications like liquid-metal lubrication,
food and polymer industries, compression and injection shaping etc.
The lubrication system can be also modeled using squeezing flow. The
seminal attempt on the topic under lubrication approximation has
been reported by Stefan [1]. Leider and Bird [2] investigated the squeez-
ing flow of power-law fluid between the parallel disks. Influence of suc-
tion/blowing on the squeezed flow was investigated by Hamza and
MacDonald [3]. Heat transfer analysis for unidirectional squeezing
flow between parallel disks was performed by Duwairi et al. [4].
Squeezed flow with heat transfer over a porous plate has been investi-
gated by Mahmood et al. [5]. Two-dimensional and axisymmetric
squeezing flows between parallel plates have been studied by Rashidi
et al. [6]. Siddiqui et al. [7] explored the effects of magnetic field in the
squeezing flow between infinite parallel plates due to the normal mo-
tion of the plates. Homotopy perturbation method (HPM) has been ap-
plied to obtain the analytic solutions of the modeled nonlinear
problems. Domairry and Aziz [8] provided the homotopy perturbation
solution (HPM) for magnetohydrodynamic (MHD) squeezed flow be-
tween the parallel disks. Qayyum et al. [9] discussed the unsteady
squeezing flow of Jeffrey fluid between the parallel disks. The squeezing

flow of second grade fluid between the parallel disks has been analyzed
by Hayat et al. [10]. Sheikholeslami and Ganji [11] explored the squeez-
ing flow of Cu-water nanofluid with the help of homotopy perturbation
method. In another article, Sheikholeslami et al. [12] investigated the
hydrodynamic squeezing flow of five different nanofluids by the
Adomian decomposition method. Domairry and Hatami [13] employed
the differential transformmethod to study the unsteady squeezing flow
of Cu-water nanofluid between the parallel plates. Famileh et al. [14]
studied the entropy generation characteristics of the squeeze film air
damping in a torsional micromirrors.

Nanofluid being a mixture of the nanoparticle and the base fluid is a
new variety of energy transport fluid. The nanofluids in view of the ex-
traordinary thermal conductivity enhancement have been useful in sev-
eral engineering and industrial applications. Cooling rate requirements
cannot be achieved by the use of ordinary heat transfer fluids because
such fluids have lower thermal conductivity. Thermal conductivity and
thermal performance of ordinary heat transfer fluids can be enhanced
by submerging the nanoparticles. Novel properties of nanofluids make
them potentially applicable in various processes of heat transfer like mi-
croelectronics, fuel cells, hybrid-powered engines, etc. It is hoped that
the magnetohydrodynamic (MHD) analysis of nanofluids has impor-
tance in optical gratings, optical switches, ink float separation, cancer
therapy and to guide the particles up in the bloodstream to a tumor
with magnets. Masuda et al. [15] studied that the variations in the ther-
mal conductivities and viscosities of liquids through the dispersion of
ultra-fine particles in the base fluids. Choi [16] examined that the pres-
ence of nanoparticles in the base fluid enhances the thermal properties
of fluids. Eastman et al. [17] discussed an abnormal increase in the
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thermal conductivity of ethylene glycol based nanofluids. Buongiorno
[18] developed a mathematical model to study the thermal properties
of base fluids. This model involves the Brownian motion and
thermophoresis effects. After that the researchers investigated the
flow of nanofluid under different conditions and different types of
nanoparticles. Natural convective boundary layer flow of nanofluid
past a verticalflat plate using Buongiorno'smodel has been investigated
by Kuznetsov and Nield [19]. Khan and Pop [20] explored the two-
dimensional flow of nanofluid over a linearly stretching sheet. They
computed the numerical solutions of the modeled differential system
through Keller-box method and provided a detailed analysis of
Brownianmotion and thermophoresis effects on the heat transfer char-
acteristics. Makinde and Aziz [21] extended this work by assuming con-
vective boundary conditions. They showed that the strength of
convective heating has a remarkable impact on the thermal boundary
layer. Stagnation-point flow of nanofluid towards a stretching surface
has been investigated by Mustafa et al. [22]. Heat and mass transfer ef-
fects on the hydromagnetic flow of a viscous fluid with slip conditions
and different types of nanoparticles have been considered by
Turkyilmazoglu [23]. He constructed both exact and analytical solutions
for the resulting flow problems. Hashmi et al. [24] analyzed the analytic
solutions for squeezingflowof nanofluid betweenparallel disks. Second
law analysis in the steady flow of nanofluid towards a rotating porous
disk is addressed by Rashidi et al. [25]. Zeeshan et al. [26] examined
the flow of viscous nanofluid between the concentric cylinders. MHD
nanofluid flow and heat transfer in a rotating system have been ex-
plored by Sheikholeslami et al. [27]. Bovand et al. [28] studied the
flow and heat transfer characteristics of nanofluid over an equilateral
triangular obstacle with different orientations. Rashidi et al. [29] exam-
ined the magnetohydrodynamic (MHD) two-dimensional flow around
a solid square cylinder. The authors solved the governing system nu-
merically through the finite volume method (FVM). Bovand et al. [30]
addressed the two-dimensional Darcy–Forchheimer flow around a po-
rous cylinder in the presence of a magnetic field. Rashidi et al. [31]
discussed the flow of nanofluid by an equilateral triangular obstacle.
The authors performed an optimization analysis to find the optimum
conditions for the maximum heat transfer rate and the minimum drag
coefficient. Rashidi and Esfahani [32] investigated the forced convection
heat transfer in a horizontal channel with a built-in square obstacle.
Magnetic field effect is further considered in this investigation.

The purpose of present study is to analyze the magnetohydrody-
namic (MHD) squeezing flow of viscous fluid in the presence of nano-
particles. The lower wall of the channel is permeable and stretched.
The upper impermeable wall moves towards the lower wall with a
specified time-dependent velocity. Mathematical formulation involves
the effects of Brownian motion (Dufour effect) and thermophoresis
(Soret effect) [33]. The series solutions to the resulting nonlinear differ-
ential systems are constructed through the homotopy analysis method
(HAM) [34–40]. Computations are performed and analyzed for the
physical quantities of interest like skin friction coefficient, Nusselt and
Sherwood numbers.

2. Mathematical formulation

Consider the unsteady two-dimensional flow of an incompressible
viscous nanofluid between two parallel walls separated by a distanceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1−γtÞ=ap

: The upper wall at y ¼ hðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1−γtÞ=ap

is moving
with velocity −γ

2

ffiffiffiffiffiffiffiffiffiffiffi
ν

að1−γtÞ
p

while the lower porous wall at y=0 is
stretching with velocity ax/(1−γt) (tb1/γ). Note that the steady
state case of linearly stretching is recovered when γ=0. The fluid is
electrically conducting in the presence of magnetic field B0/(1−γt) ap-
plied in the y– direction. In addition, the electric field andHall effects are
ignored. The induced magnetic field is not considered for a small mag-
netic Reynolds number. Thermophoresis and Brownian motion effects
are retained. All the thermophysical properties are constant. The

schematic diagram for the flow analysis is shown in Fig. 1. The
governing expressions of mass, momentum, energy and nanoparticle
concentration are
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where u and v are the velocity components in the x– and y–directions
respectively, ν(=μ/ρf) is the kinematic viscosity, μ is the dynamic viscos-
ity, ρf is the density of base fluid, p⁎ is the pressure,σ is the electrical con-
ductivity, T is the temperature, α(=k/(ρc)f) is the thermal
diffusivity, (ρc)p is the effective heat capacity of nanoparticles,
(ρc)f is the heat capacity of the fluid, DB is the Brownian diffusion coef-
ficient, C is the nanoparticle concentration,DT is the thermophoretic dif-
fusion coefficient and Tm is the mean temperature.

The boundary conditions are

u ¼ U0 ¼ ax
1−γt

; v ¼ − V0
1−γt; T ¼ T0;C ¼ C0 at y ¼ 0;

u ¼ 0; v ¼ Vh ¼ dh
dt

¼ −γ
2

ffiffiffiffiffiffiffiffiffiffiffi
ν

a 1−γtð Þ
p

; T ¼ T0 þ T0
1−γt;C ¼ C0 þ C0

1−γt at y ¼ h tð Þ

9=
;
ð6Þ

where ‘a’ denotes the stretching rate of the lower plate, V0N0 indi-
cates the suction and V0b0 for the injection/blowing velocity, and T0
and C0 are the temperature and nanoparticle concentration at the
lower wall. In boundary conditions (6), U0 =ax/(1-γt) at y = 0 indi-
cates that velocity of lower (extensible) plate varies linearly with dis-
tance from the origin. Such assumption is realistic in many processes
including the extrusion process inwhichmaterial properties and in par-
ticular the elasticity of the extruded sheet is being pulled out by a con-
stant force.

We define the transformations

u ¼ U0 F
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ffiffiffiffiffiffiffiffiffiffi
aν
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Fig. 1. Geometry of the problem.
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