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A new strategy is proposed for the quantitative structure–electrochemistry relationship (QSER) in non-aqueous
systems, based on the combination of theoretical properties of electrochemical analytes and empirical parame-
ters of solvents. Modeling of the first reduction potential of some anthraquinone derivatives in three organic sol-
vents (acetonitrile, N,N-dimethyl formamide and dimethylsulfoxide) was done using the proposed approach.
Combining the properties of electrochemical solvent and solute in a single model, shows that the structural fea-
tures of anthraquinones and also some properties of the solvents are effective in predicting the electrochemical
behavior of this non-aqueous system. The correlation coefficients of cross validation and external test set were
0.93 and 0.96 respectively which indicate stability and prediction ability of the model. To the best of our knowl-
edge, this is the first report on simultaneous including the features of analyte and solvent in a QSER. This work
obtains a way to decrease hazardous experiences in non-aqueous solvents.

© 2015 Published by Elsevier B.V.

1. Introduction

It is clear that a chemical reaction could be affected by or controlled
with some conditions such as concentration of reactant, pressure, tem-
perature, rate of mass transfer and pH. Doing a reaction in the solution
phase, makes it possible to control these conditions. However the water
is the most common solvent, but utilizing non-aqueous solvents is ines-
capable in some cases. For example, low solubility and/or stability and
also thermodynamic or kinetic possibility can limit a reaction in water.

One of the earliest applications of non-aqueous solutions was in
electrochemistry for exploring new chemical possibilities and also
obtaining information about the dynamic and static effects of solvent
on different chemical processes [1].

In spite of these advantages, usage of organic solvents in electro-
chemical reactions (and other applications) could lead to problematic

side effects on environment and human health. So nowadays the focus
is on making “green” approaches including low-risk organic solvents,
ionic liquids, supercritical fluids, immobilized solvents and even sol-
ventless processes. One of the other ways toward green approaches is
decreasing trial-and-error experiences in non-aqueous solvents by esti-
mating the analyte's electrochemical property using quantitative struc-
ture–property relationship (QSER) as a specific form of quantitative
structure–property relationships (QSPR).

Different reports have been published previously on the prediction
of electrochemical properties by focusing on the structure of the
analytes which participate in the electrochemical reaction. One of the
first works on this subject was by Driebergen et al. [2]. After that,
Tompe and coworkers suggested aQSER to predict the half-wave poten-
tial (E1/2) of α,β-unsaturated ketones in nongaseous acetonitrile [3]. Li
et al. utilized some topological descriptors tomodel the E1/2 of some dif-
ferent organic compounds [4]. As another example, Hemmateenejad
and Shamsipur used principle component–artificial neural network
and principle component regression to enhance the QSER of some or-
ganic substances [5]. Amongother studies that utilizedQSPR in different
branches of electrochemistry, QSER of new sets of chemical compounds
was focused by some researchers and others stressed on enhancement
of the modeling by stronger regression or variable selection methods
[3,6–14].

In QSER studies, two input data are required. The first is the desired
electrochemical property for a set of electro-active analytes as the
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dependent variable of QSER and the other is the structural descriptors of
these analytes, which is expected to reflect the structural features accu-
rately for use as independent variables. In the current work for the first
time, a simple and informative approach is suggested for QSER in differ-
ent non-aqueous solvents by considering both structural properties of
analytes and some empirical scales of solvent. The proposed method is
a way toward clarification of the involved solvent–electrochemical ana-
lyte interactions as well as determination of important structural fea-
tures of analytes. 30 electrochemical mixtures of anthraquinones (Aq)
in three organic solvents were chosen as a model to show the potential
of the proposed approach.

2. Experimental

2.1. Data set

The first reduction potential of ten 9,10-anthraquinone derivatives in
three different organic solvents (Acetonitrile, AN; dimethylformamide,
DMF; dimethylsulfoxide, DMSO) was adapted from literature [15]. Re-
duction potential of these compounds has been calculated from the volt-
ammograms obtained from cyclic voltammetry by the scan rates that
varied from 20mVs−1 to 1000mVs−1[15]. It has been proved previously
that the reduction process of anthraquinones is done in two steps [16,17].
Inmost cases, thefirst reduction step of Aqs is reversiblewhile the second
one is quasi-reversible [6]. So, the scope of this work was focused on the
reduction potential of the first step. The structure of 9,10-anthraquinone
compounds under study is represented in Table S1 (Supporting informa-
tion). The electrochemical analysis of ten Aqs in three organic solvents
produced 30 electrochemical samples.

2.2. Descriptors and parameters

Theoretical descriptors were utilized to describe Aqs structures and
empirical solvent-scales were used to include the information of non-
aqueous solvents of electrochemical system in themodel. Different cat-
egories of descriptors like topological, topological charge indices, consti-
tutional, geometrical, connectivity, RDF, 3D MoRSE, WHIM, GETAWAY,
functional group counts and charge descriptors were computed as the
structural features of Aqs [18]. These descriptors had enough diversity
and ability to show different aspects of Aqs' structures. To generate
these descriptors, the chemical structures of the Aqs were drawn
using the Hyperchem software (Version 7, Hypercube Inc., http://
www.hyper.com, USA) and were optimized by semi-empirical AM1
method. Then, the structural descriptors of Aqs were extracted using
DRAGON software (Milano Chemometrics and QSAR research group;
http://michem.disat.unimib.it/chm/).

127 “Solvent empirical parameters” or “solvent scales” from differ-
ent categories, “Equilibrium/Kinetic”, “Spectroscopic” and “Multiparam-
eter” [19,20] were used as the descriptors of each electrochemical
solvent. The utilized solvent scales could cover most of inter- molecular
interactions of which the solvent is capable. It is worthy tomention that
the noted solvent scales have shown good ability in various QSPR
models [21–24].

2.3. Variable selection and modeling

The calculated descriptors of Aqs and empirical scales of solvent
were collected in a datamatrix (X) whose number of rows and columns
were the number of electrochemical samples and total number of de-
scriptors respectively. After deleting constant and near-constant de-
scriptors of our electrochemical system, the correlation of descriptors
with each other was investigated, and those with high collinearity
were detected. Among the collinear descriptors, one with the highest
correlation with the reduction potential values (E0) of Aqs was retained
and the others were removed from X.

Before variable selection and modeling, 30 electrochemical samples
were divided randomly to training and test sets to further evaluation of
model. Stepwise multiple linear regression (SMLR) was utilized as the
variable selection method. Among the models suggested by SMLR, the
final model was chosen by considering their squared correlation coeffi-
cients of calibration (R2

cal) and cross validation (Q2). Cross validation,
external test set and y-scrambling (permutation test)were used to eval-
uate the prediction ability and stability of the proposed QSERmodel and
its applicability domain were defined with the aid of leverage and stan-
dardized residual concepts.

3. Results and discussion

3.1. Model development

After removing constant, near constant and collinear descriptors
from independent variables' data matrix (X), 271 descriptors for each
Aq and 121 empirical parameters for each electrochemical solvent
were presented in X of the size of 30 × 392, where 30 is the number
of electrochemical samples and 392 is the total number of descriptors.

6 electrochemical samples out of 30 (about 20%) were chosen ran-
domly as the test set, while the remaining 24 samples (about 80%)
were utilized as the training set. It is noteworthy that the E0CV of electro-
chemical samples in the training set covered the E0CV of the whole data
set. The reduction potential range of samples in the training set was
−1.283 to −0.514 V and the values of test set were in the range of
−1.117 to−0.520 V. Some considerations regarding random selection
of test set will be discussed in the next parts of the manuscript.

Stepwise regression was run on the original descriptor data matrix
(dependent variables, X) and E0CV data vector (dependent variables, y)
and 5 different models were generated step by step. But, it is clear that
some of these models may be over fitted. In order to select themost con-
venient one, the values of squared correlation coefficient of training set
(calibration) and leave one out cross validation (LOO CV)were calculated
for each model and are shown in the inset of Fig. 1. As it is seen in Fig. 1
(inset), the performance of model is not increased significantly in the
models with more than 4 parameters. So a five parametric linear model
would have the risk of over fitting and a model that contained four pa-
rameters should be chosen as the final optimum one:

E0
CV ¼ 4:989 �0:637ð Þ þ 0:602 �0:143ð ÞMor23m–4:453 �0:432ð Þ

E1s–229:221 �32:048ð Þ GATS4m–0:054 �0:012ð Þ ENR
ð1Þ

N ¼ 30;Ntrain ¼ 24;Ntest ¼ 6;R2
train ¼ 0:96; F ¼ 124:92; Fcrit 4;19ð Þ ¼ 2:90:

Fig. 1. Plot of predicted E0CV versus their experimental values for 30 electrochemical mix-
tures in training and test set using the four parametricmodel. Inset: Correlation coefficient
of the training set (R2

train) and cross-validation (Q2) versus number of parameters to select
the optimum number of parameters for model development.
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