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In this study, the problemof nanofluidflow in a rectangular domain bounded by twomoving porouswalls, which
enable thefluid to enter or exit during successive expansions or contractions is solved using Least SquareMethod.
The concept of this method is briefly introduced, and it's application for this problem is studied. Then, the results
are comparedwith numerical results and the validity of thesemethods is shown. Graphical results are presented
to investigate the influence of the volume fraction of nanoparticle, non-dimensionalwall dilation rate andperme-
ation Reynolds number on the velocity, normal pressure distribution and wall shear stress. The present problem
for slowly expanding or contractingwallswithweak permeability is a simplemodel for the transport of biological
fluids through contracting or expanding vessels. The results indicate that velocity boundary layer thickness
near the walls decreases with increase of Reynolds number and nanoparticle volume friction and it increases
as non-dimensional wall dilation rate increases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, due to the rising demands of modern technology, includ-
ing chemical production, power station, and microelectronics, there is
a need to develop new types of fluids that will be more effective in
terms of heat exchange performance. Nanofluids are produced by dis-
persing the nanometer-scale solid particles into base liquids with low
thermal conductivity such as water, ethylene glycol (EG), oils, etc. [1].
The term “nanofluid” was first coined by Choi [2] to describe this new
class of fluids. The materials with sizes of nanometers possess unique
physical and chemical properties [3]. The presence of the nanoparticles
in the fluids noticeably increases the effective thermal conductivity of
the fluid and consequently enhances the heat transfer characteristics.
Therefore, numerous methods have been taken to improve the thermal
conductivity of these fluids by suspending nano/micro-sized particle
materials in liquids. Asymmetric laminar flow and heat transfer of
nanofluid between contracting rotating disks was investigated by
Hatami et al. [4]. Their results indicated that temperature profile
becomes more flat near the middle of two disks with the increase of in-
jection but opposite trend is observed with increase of expansion ratio.
The problem of laminar nanofluid flow in a semi-porous channel in the
presence of transverse magnetic field was investigated analytically by
Sheikholeslami et al. [5].Their results showed that velocity boundary

layer thickness decrease with increase of Reynolds number and it
increases as Hartmann number increases. Several studies have been
published recently on the modeling of natural convection heat transfer
in nanofluids such as [6–8].

Studies of fluid transport in biological organisms often concern the
flow of a particular fluid inside an expanding or contracting vessel
with permeable walls. For a valve vessel exhibiting deformable bound-
aries, alternating wall contractions produce the effect of a physiological
pump. The flow behavior inside the lymphatic exhibits a similar charac-
ter. In such models, circulation is induced by successive contractions
of two thin sheets that cause the downstream convection of the
sandwiched fluid. Seepage across permeable walls is clearly important
to the mass transfer between blood, air and tissue [9]. Therefore, a sub-
stantial amount of research work has been invested in the study of the
flow in a rectangular domain bounded by two moving porous walls,
which enable the fluid to enter or exit during successive expansions or
contractions. Dauenhauer and Majdalani [10] studied the unsteady
flow in semi-infinite expanding channels with wall injection. They are
characterized by two non-dimensional parameters, the expansion
ratio of the wall α and the cross-flow Reynolds number Re. Majdalani
and Zhou [11] studied moderate to large injection and suction driven
channel flowswith expanding or contractingwalls. Using perturbations
in cross-flow Reynolds number Re, the resulting equation is solved both
numerically and analytically. Boutros et al. [12] studied the solution of
the Navier–Stokes equations which described the unsteady incom-
pressible laminar flow in a semi-infinite porous circular pipe with
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injection or suction. Through the pipe wall whose radius varies with
time. The resulting fourth-order nonlinear differential equation is then
solved using small-parameter perturbations.

The objective of the present paper is to study the nanofluid flow in a
rectangular domain bounded by twomoving porous walls. The reduced
ordinary differential equations are solved via Least squares method.
The effects of the parameters governing the problem are studied and
discussed.

2. Flow analysis and mathematical formulation

Consider the laminar, isothermal and incompressible flow in a rect-
angular domain bounded by two permeable surfaces that enable the
fluid to enter or exit during successive expansions or contractions. A
schematic diagram of the problem is shown in Fig. 1.

The fluid is a water based nanofluid containing Cu. It is assumed that
the base fluid and the nanoparticles are in thermal equilibrium and no
slip occurs between them. The thermo physical properties of the
nanofluid are given in Table 1. The effective density ρnf, the effective
dynamic viscosity μnf, the heat capacitance (ρCp)nf and the thermal
conductivity knf of the nanofluid are given as:

ρnf ¼ ρ f 1−ϕð Þ þ ρsϕ ð1Þ

μnf ¼
μ f

1−ϕð Þ2:5
: ð2Þ

Here, ϕ is the solid volume fraction. The walls expand or contract
uniformly at a time-dependent ratea•. At the wall, it is assumed that

the fluid inflow velocity Vw is independent of position. The equations
of continuity and motion for the unsteady flow are given as follows:
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In the above equations, u⁎ and v⁎ indicate the velocity components in
x and y directions, p⁎ denotes the dimensional pressure, ρnf ,μnf and t are
the density, dynamic viscosity of nanofluid and time, respectively. The
boundary conditions will be:

y� ¼ a tð Þ : u� ¼ 0; v� ¼ −Vw ¼ −
a•

c
;

y� ¼ 0 :
∂u�

∂y�
¼ 0; v� ¼ 0;

x� ¼ 0 : u� ¼ 0:

ð6Þ

Where c ¼ a•
Vw

is the wall presence or injection/suction coefficient,
that is a measure of wall permeability. The stream function and mean
flow vorticity can be introduced by putting:
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Due to mass conservation, a similar solution can be developed with
respect to x⁎ [13]. Starting with:

ψ� ¼ vx� f � y; tð Þ
a

; u� ¼ vx� f �y
a2

; v� ¼ −vf � y; tð Þ
a

;
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a
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ð8Þ

Substitution Eq. (8) into Eq. (7) yields:

u�
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y�y�y� : ð9Þ

In order to solve Eq. (9), one uses the chain rule to obtain:

f �yyyy þ α yf �yyy þ 3 f �yy
� �

þ f � f �yyy− f �y f
�
yy−a2

μnf

ρnf

 !−1

f �yyt ¼ 0; ð10Þ

With the following boundary conditions:

at y ¼ 0 : f � ¼ 0; f �yy ¼ 0;
at y ¼ 1 : f � ¼ ReA� 1−ϕð Þ2:5; f �y ¼ 0;

ð11Þ

Where αðtÞ ≡ aa•
υ is the non-dimensional wall dilation rate which

is defined positive for expansion and negative for contraction andFig. 1. Two-dimensional domain with expanding or contracting porous walls.

Table 1
Thermo physical properties of water and nanoparticles.

ρ(kg/m3) μ(Pa ⋅s)

Pure water 997.1 0.001
Copper (Cu) 8933 –
Silver (Ag) 10,500 –
Alumina (Al2O3) 3970 –

Nomenclature

c Injection/suction coefficient
NM Numerical method
Δpn Pressure drop in the normal direction
Re Permeation Reynolds number
u,v Velocity components along x, y axes, respectively
Vw Injection velocity
Greek symbols
υ Kinematic viscosity
α Non-dimensional wall dilation rate
τ Shear stress
ρ Fluid density
Subscripts
∞ Condition at infinity
nf Nanofluid
f Base fluid
s Nano-solid-particles
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