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Themagnetohydrodynamic (MHD)flowof Jeffreyfluid in a circularmicrochannel is presented. Using themethod
of variable separation, the analytical solutions to both DC-operatedMHD andAC-operatedMHDmicropumps are
found. The flow is assumed to be laminar, unidirectional, one dimensional and driven by the Lorentz force. The
Lorentz force can be taken as hydrostatic pressure gradient in themomentumequation of theMHDmicrochannel
flowmodel. The effects of Hartmann numberHa, dimensionless relaxation timeλ1 and retardation timeλ2 on the
velocity and volumetric flow rate are investigated. The velocity and volumetric flow rate grow and then reduce
with Hartmann numberHa. There is a critical value of theHa forMHD velocity and an optimumHa formaximum
volumetricflow rate. In addition, a comparisonwith previousworks is also provided to confirm the validity of the
present results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A lot of research efforts have been performed inmicrofluidic systems
[1–7], especially the MHD micropump. It is vital because of having no
moving parts, its simple fabrication processes, bidirectional pumping
ability, lower actuation voltages, reduced risk of mechanical damage
and a continuous fluid flow. The Lorentz force is produced when a
conducting fluid flows through the device equipped with the electric
field and the transverse magnetic field, which is the pumping source
in the MHD micropump system. Due to the prospective application in
microfluidic systems [8–12], the MHD micropump has been the main
subject of many studies in recent years.

Currently, there are two different versions of MHD micropump
available in the market: DC-operated and AC-operated MHD
micropumps. Theoretical and experimental studies about DC and AC
MHDdevices had begun inmany years ago. Jang and Lee [13] fabricated
a MHD micropump employing a permanent magnet and applying DC
current. Furthermore, Ho [14] explored DC MHD micropump theoreti-
cally and experimentally and predicted the pumping performance. In
order to realize it, an analyticalmodel was provided to analyze the char-
acteristic of MHD flow in a rectangular duct, and the model was based
on the steady state, incompressible and fully developed flow theory.
Kim et al. [15] investigated the capability of a DCMHDmicropump fab-
ricated on photosensitive glass for circulating liquid metal. Homsy et al.

[16] described the operation of a DCMHDmicropumpwith high current
densities. Lemoff and Lee [17–19] presented theory, fabricationmethod
and experimental results of a AC MHD pump where the Lorentz force
was used to propel an electrolytic solution along amicrochannel etched
in silicon. Eijkel et al. [20] developed an AC MHD micropump for
chromatographic application. Zhong et al. [21] used the AC MHD
micropump to actuate flow in conduits fabricated with ceramic tapes.

Moghaddam [22] obtained analytical solutions for both DC and AC
MHD micropumps with circular cross-section. Very recently, Buren
et al. [23] studied the electromagnetohydrodynamic (EMHD) flow
parallel to the corrugation grooves. And then, the further research
associated with EMHD flow perpendicular to the corrugation grooves
was carried out by Buren and Jian [24]. The fluids mentioned above
are Newtonian fluids.

Nowadays, most of the fluids used in industry and biomedical
treatment are non-Newtonian fluids. More and more researchers pre-
sented the MHD flow phenomena of non-Newtonian fluids. Sarpkaya
[25] considered the MHD flow of non-Newtonian fluids firstly. Ellahi
and Nadeem [26] analyzed the steady flow of non-Newtonian fluids
withmagnetic field and nonlinear slip effects numerically. Furthermore,
Nadeem et al. [27] studied the effects of magnetic field and partial slip
on obliquely flow. Moghaddam [28] studied MHD micropump of
power-law fluid and considered the effect of power law behavior
exponent on volumetric flow rate in a rectangular channel. Moreover,
the application ofMHDflowhas attracted the interest ofmany scientists
to analyze the flow of non-Newtonian fluids through different walls of
channels. Hatami et al. [29] investigated MHD flow of nanofluid in
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non-parallel walls using different analyticalmethods. Nadeemet al. [30]
presentedMHDflowofmicropolar nanofluid between rotatinghorizon-
tal parallel plates. Hatami and Ganji [31] analytically and numerically
surveyed the MHD flow of nanofluid in the porous medium between
two coaxial cylinders. Recently, Nadeem et al. [32] numerically investi-
gated theMHD oblique flow ofWalter's B type nanofluid over a convec-
tive surface. Zhao et al. [33] focused on theMHD flow of the generalized
Maxwell fluid under AC electric field through a two-dimensional rect-
angular channel. Si and Jian [34] studied the MHD flow of Jeffrey fluid
between two slit microparallel plates with corrugated walls by utilizing
perturbation technique.

In many literatures, the generalized Jeffrey fluid model was defined
as working fluid. Liu et al. [35] presented the AC electroosmotic flow of
Jeffrey fluid between two microparallel plates by using the method of
separation of variables. Mehmood et al. [36] explored the steady stagna-
tion pointflow of Jeffreyfluid toward a stretching surface. As amatter of
fact, Jeffrey fluid model treats the classical viscous Newtonian fluid as a
special case for λ1 = 0, λ2 = 0, and as the Maxwell fluid when λ1 ≠ 0,
λ2 = 0. Furthermore, the circular channel is very common in practical
applications. So in this paper we study the MHD flow of Jeffrey fluid
through a circular microchannel and discuss the variations of velocity
and volumetric flow rate.

2. Problem statement and mathematical formulation

We consider the MHD flow of an incompressible Jeffrey fluid
through a circular microchannel. Geometry of the problem is shown in
Fig. 1. The channel has a circular cross section with a radius R and a
length L. The channel is subjected to an electrical field E imposed from
outside to inside and an uniform magnetic field vertically upward
with a strength B. The magnetic and electric fields are perpendicular
to each other and produce the so called Lorentz force in axial direction.

A cylindrical coordinate system is introduced, where r-axis and x-axis
are radical and flow directions, respectively.

The numerical results of MHD flow in 3D microchannels showed
that the velocity field is unidirectional in most parts of the
microchannels [37]. So the velocity components in the r and θ directions
are neglected compared with velocity along the conduit's axis. The con-
tinuity equation reduces to ∂u / ∂x = 0. The Cauchy momentum equa-
tion in x direction can be expressed as [22]:
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where u is the axial velocity along positive x direction, ρ is the fluid
density, t is the time, p is the pressure and τrx is the component of stress
tensor. For generalized Jeffrey fluid, the constitutive equation satisfies
[35]:
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where λ1 is relaxation time, λ2 is retardation time and η0 is the zero
shear rate viscosity. Combining Eqs. (1) and (2) leads to [34]:
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Assuming that hydrostatic pressure head in this study just provides
the inlet flow velocity instead of giving the pressure difference along
the channel, the pressure difference primarily caused by the Lorentz

force J
!� B

!
( J
!

is electric current density) and its effect is taken as
uniformly distributed over the entire length of the channel L. Hence,
the pressure head is expressed as follows [14]:

−
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L
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where Δp is the pressure head along the channel with length L given by
the cross products of current density vector andmagnetic field intensity
vector. For DC-operated micropump, it can be expressed as:

Δp ¼ J
!� B

!� �
L; ð4bÞ

where B
!

and J
!

are related to each other by the Ohm's low:

J
!¼ σ E

!þ u!� B
!� �

; ð4cÞ

where σ is the electrical conductivity.

Fig. 2. Variations of DC-operated MHD velocity ū and volumetric flow of rate Q with Ha for different relaxation time λ1 when λ2 ¼ 0:08, β = 1 and t ¼ 1.

Fig. 1. The schematic of the MHD flow of Jeffrey fluid through a circular microchannel.
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