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The exact second virial coefficient (B2) for anisotropic fluids is evaluated in a compact and exact form. Explicitly,
the B2 expressions for spherical D-dimensional square well fluids with an embedded point dipole are given in
terms of simple special functions for the whole range of dipole moment strengths and potential ranges. An alter-
native equation for the B2 value of three-dimensional Stockmayer model is also reported for comparison pur-
poses. Additionally, some aspects of the second virial coefficient for non-spherical square-well model are
discussed in relation with the formation of ordered fluids. In addition, Boyle temperatures are also evaluated
with any desire accuracy. These calculations enlarge the set ofmolecularmodels owning an analytical expression
for the second virial coefficient.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the scarce properties of liquids that can be obtained both
from experiments (static light scattering or pVT data) and from ab initio
methods is the second virial coefficient B2 [1–22]. The link between the-
ory and laboratory determinations involves establishing intermolecular
potential expressions thatmakes B2 able to be numerically or analytical-
ly integrated. Besides being of classical interest, B2 has become relevant
in the colloidal and proteic fields, since it divides the B2 N 0 region,
where particles should not experience enough attractions to associate
due to the lacking of intense collective behavior, and the B2 b 0 region,
where attractive interactions may induce clustering or droplet forma-
tion or crystallization [23–27]. Moreover, a specific relation between
the critical temperature Tc of the gas-phase liquid transition and the sec-
ond virial coefficient for a particle of volume vm has been recently
established by Vliegenthart and Lekkerkerker [28]:

B2 Tcð Þ ¼ −6vm: ð1Þ

However, in spite of the intrinsic and renewed interest on the second
virial coefficient, for most of the intermolecular potential models, no
exact functions have been derived for B2. The situation is even more
complex for anisotropic intermolecular potential models that account
for the non-spherical shape or electrostatic interactions due to the pres-
ence of permanent multipole moments in the molecule. For instance,

consideringmore specifically the body of the incomingwork, fluids em-
bedding a dipole moment have received the attention of researchers
from decades ago to the present [29–35]. The second virial coefficient
of dipolar hard spheres (HSs) has recently been evaluated in a very
closed form free from approximations [7], while the second virial coef-
ficient for the Stockmayer (dipolar Lennard–Jones) fluid was evaluated
as a series expansion by Keesom [36] by employing an orientational av-
erage potential.

Secondly, for non-spherical particles, the shape-dependent func-
tional of B2 can be solved for hard bodies as one-half of the excluded vol-
ume of the molecules. The excluded volume is not usually known
analytically except for a few cases [37]. Fortunately for hard convex bod-
ies, Minkowski sums permit us to express the isotropic virial coefficient
in terms of simple geometrical descriptors of the body. Moreover, for
the evaluation of the B2 value corresponding to some Lennard–Jones-
like intermolecular potential, a sum of Gamma functions has been pro-
posed [38]. However, the problem is far from being solved in a more
general case.

Following the lines exposed above, thefirst goal of thiswork is to ob-
tained expressions for the second virial coefficient of dipolar squarewell
(DSW) in a closed form free from approximations. This task will be
faced in the following section. In parallel and for comparison, an alterna-
tive expression for the corresponding B2 value for the Stockmayer
model is included and compared. The main results for these second
virial coefficients and the relation between Boyle and critical tempera-
tures are presented. Secondly, the non-spherical square-well potential
will be treated. This model is the simplest one incorporating both repul-
sive and attractive parts and some comments in relation with the
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formation of ordered phases will be of general application for more
complex anisotropic models. A short general discussion closes the
paper.

2. Results

The starting point of this work is the following equation for the sec-
ond virial coefficient for a general intermolecular potentialφ(r12,ω1,ω2)
that depends both on the intermolecular distance r12 and on the relative
orientation of the pair of molecules with respect to a given reference
frame given by ω1 and ω2:

B2 βð Þ ¼ −1
2

Z
S2
dω1 f ω1ð Þ

Z
ED

dV r12ð Þ
Z

S2
dω2 f ω2ð Þ

� e−βφ r12 ;ω1 ;ω2ð Þ−1
� �

ð2Þ

where f(ωi) is the single particle orientation distribution function (ODF)

of molecule i, satisfying ∫S2dω f ωð Þ ¼ 1 and β = 1/kT with k the

Boltzmann constant and T the absolute temperature. In isotropic fluids

with spherical shape with diameter σ, f(ωi) = 1/4π. S2 designates the
unit hypersphere and ED the accessible space. In the case of a hard

core fluid, the volume integrals ∫ED
dV r12ð Þ can be split into two inte-

grals: one corresponding to the hard body virial coefficient (i.e., the in-
tegral in the region B σð Þ, being B σð Þ the ball of radius σ) and a second
corresponding to the long range component of the potential in the re-
gion ED5B σð Þ . The temperature that leads to an ideal gas behavior
(B2 = 0) is known as the Boyle temperature.

2.1. Dipolar square well fluids

Consider two spherical particles of diameter σ interacting via the
square well potential:

φSW r12ð Þ ¼
∞ if r12≤σ
−ε if σ br12≤λσ
0 if λσ br12b∞

8<
: : ð3Þ

From these potentials of range λ and energy depth ε, the second
virial coefficient and the reduced Boyle temperature TB⁎ = kTB/ε of a D-
dimensional SW fluid are known to be given by:

BSW
2 βð Þ ¼ b0 1− λD−1

� �
eβε−1
� �h i

ð4Þ

T�
B ¼ 1

ln
λD

λD−1

 ! ð5Þ

where the factor b0 ¼ 1
2σ

D πD=2

Γ D
2þ1ð Þ is the second virial coefficient of a hard

sphere in dimension D, being Γ(t) = ∫0
∞xt − 1e−xdx the Euler Gamma

function. Let us now consider an additional term due to the two identi-
cal permanent dipole moments μ:

φD r12;ω1;ω2ð Þ ¼ − μ�2

r�312
3u1u2−u1u2ð Þ ð6Þ

with ui the orientation unit vector along the dipoles axis, r12⁎ = r12/σ
and μ⁎2 = μ2/εσ3. Considering the work of Virga [7], the integration
upon ω2 can be performed by considering the symmetry properties of
the integral that is invariant under the orthogonal group O(3). The

final result for a general radial potential can be written as:

B2 β; μð Þ ¼ b0−2π
Z 1

0
du
Z ∞

0
r212

r312
η

sinh
η
r312

 !
exp −βφ r12ð Þ½ �−1

( )
dr12

ð7Þ

with η = βμ⁎2(1 + 3u2)1/2. By performing the integration with the SW
potential function, the isotropic virial coefficient can be finally written
as:

B�DSW
2 β; μ�� � ¼ BDSW

2 =b0 ¼ 1−
Z 1

0
ψD ηð Þdu ð8Þ

where the functions ψD are given by:
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for the three dimensional and quasi bi and monodimensional cases. In
the above expressions Γ(x,y) = ∫y

∞tx − 1e−tdt is the upper incomplete

Fig. 1. The reduced second virial coefficients of the dipolar squarewell of range λ=1.5 are
plotted as a function of the temperature for different values of μ*. The lessening of B2 with
μ* for a given temperature is apparent.
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