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The thermodynamic properties of simple and chain fluids, whose molecules interact through the three following
basic hard-core intermolecular potentials: the square-well (SW), the triangular-well (TW) and the Sutherland
(SU) [−ε(d / r)γ] potentials are presented in a unified mathematical framework. In order to achieve this goal
we use the Barker–Henderson perturbation theory with the macroscopic compressibility approximation (BH-
MCA) of monomer fluids combined to a simple, analytic expression of the hard-sphere radial distribution func-
tion (RDF) derived by Sun [Can. J. Phys. 83 (2005) 55], which allows the first-order perturbation term of the
Helmholtz free energy, f1, to be obtained in terms of the same generic analytic function for the three potentials.
This function depends on three parameters which assume different values according to the potential considered.
Other thermodynamic quantities such as the compressibility factors can be derived from f1, which thus plays a
pivotal role in the equation of state (EOS) obtained from perturbation theory. Numerical values of f1 obtained
from this generic function are in good agreement with recent Monte Carlo simulations for the three aforemen-
tioned basic potentials, aswell aswith the various parameterizations of f1 in terms of an effective packing fraction
ηeff for the square-well and Sutherland potentials commonly used in the statistical associatingfluid theory for po-
tentials of variable range (SAFT-VR). For the corresponding chain fluids, Wertheim first-order thermodynamic
perturbation theory (TPT1) is used. It requires the SAFT-VR expressions of the potentials RDF at the hard-core
contact d, g(d), and its derivative with respect to the packing fraction, which can be expressed in terms of the ge-
neric function giving f1. Numerical values of g(d) are also in agreement with the corresponding Monte Carlo re-
sults. The equations of state (EOS) of the SW, TW and SU chain fluids are then obtained in simple, analytical
forms. The above three basic potentials can then be combined to give more complicated molecular interactions.
One important example of combination is studied. It involves the linear combination of two Sutherland potentials
with γ= α, β to obtain the Mie(α,β) class of interactions, of which the Lennard–Jones LJ(12,6) or Mie(12,6) is a
particular example. Numerical values of: a) theMie(12,6) first-order perturbation term of the residual Helmholtz
free energy, f1

Mie, b) the radial distribution function at contact, gMie(σ), [uMie(σ)=0], and c) the reduced pressure
or compressibility factor of the monomer, dimer and tetramer Mie(12,6) fluids, obtained from the generic func-
tion, f1, corresponding to the combined Sutherland potentials, are compared to Monte Carlo and molecular dy-
namics simulations and to the recent enhanced SAFT-VR Mie 20013 EOS of Lafitte et al. [J. Chem. Phys. 139
(2013) 154504],whose improvementswith respect to the previous SAFT-VRMie 2006 EOS are highlighted in de-
tail. The results obtained from the generic function f1 are slightlymore accurate for theMie(12,6)monomerfluid,
while the results from Lafitte et al., which uses a new f1 parameterization of ηeff for the Sutherland potentials,
valid for 5 b γ ≤ 100, are more accurate for the Mie(12,6) dimer and tetramer fluids.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the main goals of Statistical Mechanics is to understand how
the microscopic properties of matter such as molecular interactions in-
fluence itsmacroscopic properties. The development of accuratemodels
for the thermodynamic properties of complex fluids with chainlike

molecules (e.g., polymers, alkanes, and surfactants) is essential in pro-
cess design calculations, which to be efficient requires moreover accu-
rate as well as simple, analytic algebraic expressions. As a result
considerable effort has been dedicated to the development of analytic
molecular-based equations of state (EOS), in which the parameters
are directly related to the microscopic properties of the molecules.

One of the most successful theories for such EOS is the statistical as-
sociatingfluid theory (SAFT), of which there aremany excellent reviews
[1–3]. In this article we shall concentrate on one of the most popular
versions of the theory: the variable range type called SAFT-VR [4–7]. It
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was first developed for chain molecules composed of monomer seg-
ments interacting with hard-core potentials [4], u*(r) = u(r) / ε, of di-
ameter d, depth − ε, and with the following variable attractive tails
expressed in terms of the reduced intermolecular distance x = r / d as

a) The square-well potential SW(λ) (Fig. 1):

¼ þ∞; xbλ;
u� xð Þ ¼ u xð Þ=ε ¼ −1; 1bxbλ;

¼ 0; xNλ:
ð1Þ

b) The Sutherland potential SU(γ) (Fig. 1):

u� xð Þ ¼ þ∞; xb1;
u� xð Þ ¼ −x−γ

; xN1;
ð2Þ

and also the hard-core Yukawa potential (YU(γ): u*(r) = −exp
[−γ(x − 1)] / x, x N 1). The theory can then be generalized to soft-
core systems by linearly combining several SU(γ) [4] potentials. When
two SU(γ) potentials are used, one obtains the important Mie(α,β) po-
tentials (γ = α, β), of which the Lennard–Jones LJ(12,6) is a well-
known particular case.

In the SAFT-VR theory the residual (res) Helmholtz free energy for
associating chain molecules Fcres = Fc − Fcid (the superscript id means
ideal gas and the subscript cmeans chain), fromwhich other thermody-
namic functions can be derived, are divided into three independent
parts:

Fc
res

NckBT
¼ Fc−Fc

id

NckBT
¼ Fmono

NckBT
þ Fchain

NckBT
þ Fassoc

NckBT
: ð3Þ

Fchain and Fassoc are respectively the contribution due to chain forma-
tion and intermolecular association. Both quantities are evaluatedwith-
in the framework ofWertheim first-order thermodynamic perturbation
theory (TPT1) [8,9]. Nc is the number of chain molecules in volume V,
and kB is the Boltzmann constant. Fmono is the residual free energy of
monomer segments calculated from thehigh-temperature Barker–Hen-
derson (BH) perturbation expansion [10–17] as

Fmono

NkBT
¼ FHS

NkBT
þ F1
NkBT

1
T� þ

F2
NkBT

1
T�2 ¼ FHS

NkBT
þ f 1
T� þ

f 2
T�2 ; ð4Þ

where N = mcNc is the number of monomers in volume V, mc is the
number of monomers in a chain molecule, T* = kBT / ε is the reduced
temperature, FHS is the hard-sphere (HS) free energy given by its

Carnahan–Starling (CS) expression in terms of the packing fraction
ηd = πρd* / 6 = πρd3 / 6 (ρ = N / V is the monomer density and
ρd* = ρd3) as.

FHS

NkBT
¼ 4ηd−3ηd

2

1−ηd
� �2 ð5Þ

The first-order term is given by

F1
NkBT

¼ f 1 ¼ 12ηd

Z ∞

1
gHS xð Þu� xð Þx2dx; ð6Þ

while the second-order term in the macroscopic compressibility ap-
proximation (MCA) [12] may be expressed as

F2
NkBT

¼ f 2 ¼ −6ηdK
HS
Z ∞

1
gHS xð Þ u� xð Þ� �2x2dx; ð7Þ

KHS ¼ 1−ηd
� �4

1þ 4ηd þ 4ηd
2−4ηd

3 þ ηd
4 ; ð8Þ

where gHS(x) is the hard-sphere radial distribution function (HS-RDF)
and KHS is the HS isothermal compressibility given by its CS
expression [18].

Different analytical formulae are used for the free energies, Fmono,
corresponding to the three aforementioned potentials. They are obtain-
ed by applying first themean-value theorem to themonomer free ener-
gy perturbation terms f1 and f2 to factorize the function gHS(x) out of the
integration sign and then use its Carnahan–Starling (CS) expression at
contact for an effective packing fraction ηeff. This expression of f1 is
then employed to obtain the monomer cavity function at contact with
the hard core, y(d), required for the calculation of Fchain [4]. In this
paper we do not consider the calculation of Fassoc.

For example for the SW(λ) potential, a first set of analytical formulae
was derived in thisway forλ≤ 1.8 by Gil-Villegas et al. [4], and a second
set was later proposed to extend this range up to λ = 3 by Patel et al.
[19]. For the SU(γ) potential a first set was proposed by Gil-Villegas
et al. [4] valid only for 3 b γ ≤ 12; this restricted the SU potentials
which could be combined to give Mie potentials. For this reason a sec-
ond set of formulae was recently proposed by Lafitte et al. [6] in an en-
hanced version of the SAFT-VR theory, which extended the range of γ to
5 b γ ≤ 100. Finally, another set of analytical formulae was also pro-
posed for the YU(γ) potential with 1.1 ≤ γ ≤ 4 [4]. This great variety
of analytical formulae comes from the use of the mean-value theorem,
which introduces different average distances ξ at which the HS-RDF

Fig. 1. Three basic intermolecular potentialswith hard-core diameter d of liquid theory: a) the square-well SW(λ) potential; b) the triangular-well TW(λ) potential and c) the Sutherland
SU(γ) potential.
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