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This review describes theoretical and experimental methods used to study nonradiative energy transport (NET)
occurring between molecules both in solid and in liquid solutions.

In particular, the methods mentioned are applied in studying energy transport between FMN molecules playing
the role of chromophores in blue light photoreceptors in many living organisms.

The application of the Bojarski theory of multistep energy transfer and SCDM theoretical model as well as Monte
Carlo simulations to analyze spectroscopic data of fluorescence quantum yield and emission anisotropy of FMN al-
lows to understand the paths of energy transfer in the set of FMIN monomers and dimers in liquid, viscous and rigid
solutions (energy transfer from M* to D, energy migration between monomers and dimers as well as reverse energy
transfer).

Evidence is provided for the “blue” and “red” monomer and dimer species, which lead to dispersive energy

transfer taking place from more to less energetic FMN luminescent centers.
The parameters characterizing energy transport are calculated and provided. The explained complex character of
energy transport in the system studied may be important for analyzing processes occurring in biological systems
containing FMN or other photobiological molecules connected with light-harvesting proteins.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Flavins are biologically important molecules which are omnipresent
in living organisms. They take part in many biochemical processes in
which flavin mononucleotide (FMN), as well as flavin adenine dinucle-
otide (FAD) and riboflavin (RF) (Fig. 1) play extremely important bio-
logical roles in redox reactions of the respiratory chain, Krebs cycle,
pirogronian dehydrogenase system and other reactions. As chromo-
phores in photoreceptors flavins also take part in a variety of photobio-
logical processes, among others in photodynamic effect, phototropism,
phototaxis and chloroplast translocations [1-5], modulation of the cir-
cadian clock and regulation of flowering [6-13]. The research on flavo-
protein photoreceptors has been discussed in many reviews [1,2,6,8,
14-16]. Rapid progress can be observed in the characterization of pho-
toreceptors, their structure [6,16-21] and photochemistry, as well as
in their functioning. Extensive studies have been carried out on struc-
tural and conformational changes of photoreceptors induced by blue-
light excitation [1,6,22-24], on signal transduction pathways [1,6,9,10,
13,23,25-27], photocycles [1,4,22,28] and thermodynamic functions of
transformations occurring during photocycles [29-32].

In the last decade flavin dimers were shown to occur in several bio-
logical systems. Bieger et al. [33], relying on crystallographic studies,
demonstrated the presence of six riboflavin dimers in dodecin, a flavo-
protein from archeal Halobacterium salinarium. The biological function
of these dimers is not fully understood. The authors speculate that
dodecin and their riboflavin dimers could participate in some sort of
redox reactions. Other potential functions might be light harvesting or
protection against UV radiation by aromatic tetrade which is formed
by sandwiching of the six riboflavin dimers [33]. Recently Staudt et al.
[34] showed that riboflavin forms antiparallel stacked dimers in archeal
dodecin in which the distance between the two isoalloxazine moieties is
3.5 A. Exactly the same distance between the monomer units in flavin
dimers was obtained by Grajek et al. in solutions (3.5 & 0.3 A in water
[35]and 3.2 + 0.3 A in PVA [36,37]). The x-ray structures of bacterial
dodecin from Thermus thermophilus revealed the binding of FMN stak-
ing dimers in a novel si-si-orientation [38]. Muralidhara and Wittung-
Stafshede [39] found for the first time parallel plane FMN dimers in
flavodoxin from Desulfovibrio desulfuricans expressed in Escherichia
coli in which FMN is a co-factor. They confirmed the structure of stack-
ing FMN dimers obtained by Grajek et al. [35] on the basis of calorimet-
ric studies of isothermic titration, NMR as well as absorption and
fluorescence spectroscopy. In the paper [40] Muralidhara et al. showed
the conditions under which FMN binds to apoflavodoxin as a dimer or as
a monomer. Also Kitizing et al. [41], relying on crystallographic
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Fig. 1. Structural formula of some common flavins: riboflavin (RF), flavin mononucleotide
(FMN) and flavin adenine dinucleotide (FAD).

measurements of the flavoprotein YqjM, showed that this is a tetramer-
ic enzyme organized as a dimer of two active dimers containing FMN.

Noteworthy, the compounds which play key roles in photosynthesis
take the form of dimers. Among them are chlorophylls acting as dimers
in photosynthetic centers of both green plants [42,43] and photosyn-
thetic bacteria [44].

Spectroscopy and photochemistry of flavins have been the subject of
intensive studies for about eighty years [45-58] in view of the wide bi-
ological function that they play in living organisms, particularly as chro-
mophores in blue light photoreceptors [1,6,14]. Since the sixties of the
20th century every few years the symposia devoted to flavins: “Flavins
and Flavoproteins — International Symposium” have been organized.
The survey of spectroscopic examinations of flavins can be found in nu-
merous review articles [37,53,57,58].

The absorption spectra of FMN, FAD and RF are similar. FMN pos-
sesses characteristic absorption maxima at 445 nm, 370 nm, 265 nm
and 220 nm (Fig. 2) and it exhibits fluorescence with the maximum at
around 520 nm in PVA and 530 nm in water solutions and a phospho-
rescence band at around 605 nm at low temperatures (below 150 K)
in ethanol. At high concentrations flavins form dimers. The examina-
tions showed that FMN in aqueous solutions [62,63] and in rigid solu-
tions (PVA) [61,37], even at extremely high concentrations, does not
form aggregates higher than dimers. The absorption spectra of dimers
(Fig. 2) possess a characteristic shoulder at about 480 nm [35,37,64].

Until the eighties, the dimerization process of FMN and its influence
on absorption spectra has not been studied, although the suggestions
that flavins might form dimers had appeared earlier in literature |50,
51,65]. Song et al. [57] suggested extremely weak fluorescence of ribo-
flavin (and its derivative) dimer based on the phosphorescence excita-
tion spectra at T = 77 K. The mentioned studies have not been,
however, oriented towards the determination of dimerization constant
and investigation of dimerization process. In 1968 Sarma et al. [66]
followed by Kainosho & Kyogoku [67] proposed the models of FMN
dimer based on NMR studies, in which FMN monomers were aligned
“face to face” one above the other and slightly shifted. These models dif-
fer by the shifts of isoalloxazine rings.

For the first time typical studies of the FMN dimerization process
were carried out for FMN in water and in a glycerol-water solution in
1984 [64,35]. In these works the effect of dimerization on the absorption
spectrum of flavins was studied. The next FMN dimerization process
was examined in rigid PVA [61]. These investigations were performed
very carefully and with high accuracy. The limit of solubility was not
exceeded and not approached. In water, the solubility of FMN reaches
8 x 1072 M, but in investigations of FMN in water the following range
of concentrations was used: from C=1x 107> Mto 1.8 x 1072 M
(in publications [62,64,35,68]). However, the solubility of FMN in the
glycerol-water (GW) solution and in PVA is higher, so Cpx =
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Fig. 2. Absorption spectrum of flavin mononucleotide (FMN) in aqueous solution (—) and
dimer spectrum (- - - - ). Dimer spectrum and the dimerization constant K were calculat-
ed on the bases of modified Forster and Levshin methods.
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