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Two different Reverse Monte Carlo strategies, ‘RMC++’ and ‘RMCPOW’, have been compared for determining
the microscopic structure of some liquid and amorphous solid systems on the basis of neutron diffraction mea-
surements. The first, ‘g(r) route’, exploits the isotropic nature of liquids and calculates the total scattering struc-
ture factor, S(Q), via a one-dimensional Fourier transform of the radial distribution function. The second, called
‘crystallography’ route, is based on the direct calculation of S(Q) in the reciprocal space from the atomic positions
in the simulation box. We describe these two methods and apply them to four disordered systems of increasing
complexity. The two approaches yield structures in good agreement to the level of two- and three body correla-
tions; consequently, it has been proven that the ‘crystallography route’ can also deal perfectly with disordered
materials. This finding is important for future studies of liquids confined in porous media, where handling
Bragg and diffuse scattering simultaneously is unavoidable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Reverse Monte Carlo (RMC)method [1] is a simple tool used for
decades for elucidating the detailed atomic level structure of liquids and
solids from scattering measurements. Over the past 25 years, RMC has
been successfully applied to a wide variety of disordered materials
that display structural disorder of varying extent: simple liquids [2],
molten salts [3], molecular liquids [4–6], water [7] and aqueous solu-
tions [8] and metallic [9] and covalent [10,11] glasses. A separate class
of applications has targeted ‘disordered crystals’ in which long range
(crystalline) order and local (i.e., within the first coordination sphere)
disorder are present simultaneously: examples may be crystals of silver
and copper halides [12,13] and of tetrahedral molecules [14].

It was clear early on [12] that dealingwith genuine crystallinemate-
rials requires strategies different from those applicable for isotropic
liquids/amorphousmaterials, due to the presence of long range periodic
symmetries and the locally anisotropic nature of crystals. Just before the
turn of the millennium, the (so far) ultimate solution was created: the
RMCPOWsoftware [15] is able to calculate Bragg- and diffuse scattering
intensities directly from the particle coordinates, even for powder dif-
fraction data obtained from laboratory X-ray sources and thermal neu-
tron diffraction. For experimental data measured over very wide
momentum transfer ranges, the RMCProfile strategy [16], that involves
the separation of the Bragg profile and Fourier-transform to real space,
and a subsequent modeling of the total radial distribution function

and the Bragg-profile, is also frequently used. The PDFGui software
[17], performing PDF-based analysis of powder diffraction data, is a
powerful tool for providing structural models based on the radial distri-
bution function of crystalline materials. This is an alternative to the
strictly unit-cell based investigation of crystalline structures; on the
other hand, it is not capable of dealingwith genuinely disordered struc-
tures. For isotropic disorderedmaterials the original strategy of RMC [1]
may be used, i.e., from the atomic positions, first the radial distribution
functions (RDF) are calculated, which later are Fourier transformed to
the reciprocal space, so that primary experimental information, the
total scattering structure factor (TSSF) may serve as ‘target function’ of
RMC. Software that can realize this strategy may be RMC++ [18],
RMC_POT [19] or RMCProfile [16,20]. Details of the two strategies will
be provided below; for now, it is important to state that a proper com-
parison between the two strategies is still missing.

The primary aim of this work is to test these strategies for several
model systems. Since it is obvious that the simple route, via the calcula-
tion of the RDF, cannot be applicable for crystals, what needs to be test-
ed iswhether themore time consuming ‘crystallographic’ approach [15]
can be used for isotropic disordered systems, such as liquids. Beyond the
‘per se’ interest, the timeliness of such a study lies in that a very impor-
tant class of ‘mixed’ systems, ‘fluids in pores’ would require a method
that can handle both perfect crystals (like zeolites) and liquids (like
water) [21–23]. Note that the ‘crystallographic’ approach has already
been proven to reproduce the atomic structure of simple adsorbed
fluids (up to the level of three body correlations) in zeolites of varying
pore sizes using the N-RMC method in which the number of particles
is an additional adjustable parameter [23]. In that work the target

Journal of Molecular Liquids 207 (2015) 211–215

⁎ Corresponding author.
E-mail address: vsanchez@iqfr.csic.es (V. Sánchez-Gil).

http://dx.doi.org/10.1016/j.molliq.2015.02.044
0167-7322/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Journal of Molecular Liquids

j ourna l homepage: www.e lsev ie r .com/ locate /mol l iq

http://crossmark.crossref.org/dialog/?doi=10.1016/j.molliq.2015.02.044&domain=pdf
http://dx.doi.org/10.1016/j.molliq.2015.02.044
mailto:vsanchez@iqfr.csic.es
http://dx.doi.org/10.1016/j.molliq.2015.02.044
http://www.sciencedirect.com/science/journal/01677322
www.elsevier.com/locate/molliq


structure factor was obtained by simulation rather than from experi-
ments and the study was restricted to simple fluids. Structural investi-
gations of such complicated materials, that are of utmost significance
in catalysis, oil industry, soil chemistry…, will not be possible until an
establishedmethod of structural modeling can be proven to be applica-
ble. Our aim now is to see whether the ‘crystallographic’ approach is
also suitable for fitting experimental structure factors for more complex
fluids.

Bearing in mind the above, the two approaches are tested on disor-
dered one component systems of increasing complexity, from liquid
argon to amorphous silicon. Liquid argon (l-Ar) is one of the simplest
fluids in all respects: it can be easily described using radially symmetric
pair potentials [24]. Liquid gallium (l-Ga), is a unique metallic element
with possible short-lived covalent bonds that manifest in the slightly
unusual shape of the main peak of the total scattering structure factor
[25]. Liquid selenium (l-Se) is one of the most unusual elemental liq-
uids, because of the twofold coordination of the atoms and the resulting
chain-like structure [26]. Finally, amorphous silicon (a-Si) can be
regarded as a classic example of a disordered fourfold-coordinated co-
valent material that, in contrast to its well-known crystalline form,
lacks the long-range order [27]. In the cases of l-Ga, l-Se and a-Si, exper-
imental data [25,29,30] are from neutron diffraction measurements. In
the case of argon, a computer-generated model of the liquid [33] has
been employed, for two reasons: (1) this way, no systematic experi-
mental errors had to be cared for, and (2) the early experimental data
[28] exhibited some residual systematic errors that made a thorough
comparison of the methods somewhat cumbersome.

2. The two approaches for calculating themeasurable total scattering
structure factors within RMC

Details of the RMC method can be found in various publications [1,
16,20,31,32,18,19] and therefore, here we will concentrate only on the
parts relevant for calculating the structure factor from particle
coordinates.

In short, the RMC algorithm produces sets of three-dimensional
particle coordinates for which the calculated structure factor fits the
input diffraction data within the estimated experimental errors. The
goodness-of-fit is quantified using a χ2-value:

χ2 ¼
XNQ

i¼1

Scalc Qið Þ−Sexp Qið Þ
� �2

σ2 Qið Þ ; ð1Þ

where Q is the modulus of the scattering variable, the sum runs over all
experimental points,NQ; Sexp and Scalc are the experimental and simulat-
ed structure factors, respectively, and σ is the ‘estimated’ standard devi-
ation for the experimental point i.

To minimize χ2, random movements are attempted for all atoms in
the simulation box. If the new non-overlapping position reduces differ-
ences between experimental and calculated structure factors, the move
will be accepted. Otherwise, the move is accepted according to an ac-
ceptance probability, Pacc, given by

Pacc ¼ min 1; exp −χ2
new−χ2

old

2

 ! !
; ð2Þ

whereχold
2 andχnew

2 correspond to the original and proposed atomic co-
ordinates, respectively.

Finally, an exclusion core around each particle is defined, rcutoff, to re-
flect its effective size. If the proposed position overlaps with any other
particle in the simulation box then the move will be automatically
rejected. Further constraints can be applied, for example, on the coordi-
nation number and/or nearest neighbor distances and angles [31,32,18,
16,20].

The different approaches that we present here, are based on two dif-
ferentways of calculating the total scattering structure factor, Scalc, from
the particle coordinates.

2.1. Method I: the ‘g(r) route’ (RMC++)

This approach is based on the one-dimensional Fourier transforma-
tion of the radial distribution function (RDF). For one component
systems, the RDF can simply be calculated from the atomic positions as

g rð Þ ¼ n rð Þ
ΔVρ

; ð3Þ

where n(r) is the number of atoms at a distance between r and r + Δr
from a central atom, ΔV is the volume of a spherical shell between r
and r + Δr and ρ is the number density of the system.

Liquids and amorphous materials can be considered isotropic be-
yond nearest-neighbor distances so that for switching between the
real and reciprocal space, a one-dimensional Fourier transform iswidely
used. Radial distribution functions can be Fourier transformed and
weighted for the actual experiment thus providing the total scattering
structure factor, S(Q). For neutron scattering measurements and one
component systems, the appropriate Fourier transform is given by

S Qð Þ ¼ 1þ 4πρ bh i2
Q

Z ∞r g rð Þ−1½ � sin Qrð Þdr

0
; ð4Þ

where ρ denotes the number density of the sample, 〈b〉 is the neutron
scattering length of the atom type in question and Q are the moduli of
the reciprocal lattice vectors and the integral runs over atomic distances
r. In practice, a discrete integration using the so called rectangularmeth-
od [32] is performed with a summation whose upper limit is restricted
by the half-length of the simulation box. This method is implemented
in, for instance, the RMC++ [32,18], RMC_POT [19] and RMCProfile
[16,20] software packages.

2.2. Method II: the ‘crystallography route’ (RMCPOW)

In contrast to Method I, the ‘crystallography route’, implemented by
the software RMCPOW [15], is based on the super-cell approximation,
repeating the ‘unit cell’ (i.e., in our case, the simulation cell) in each di-
rection. The total scattering structure factor, S(Q), is calculated using a
three-dimensional Fourier transformation to the reciprocal space from
atomic coordinates. In this way, RMCPOW can deal with ordered and
disordered systems because diffuse (local disorder) and Bragg scatter-
ing (crystalline, long range order) are both considered. Diffuse intensi-
ties, that are assumed to vary smoothly, are locally averaged whereas
for Bragg intensities the same summation is performedwithout averag-
ing (see Ref. [15] for details).

In the case of neutron diffraction, the orientationally averaged
structure factor [15] is

S Qð Þ ¼ 2π2

NV bh i2
X
Q 0

jF Q 0� ���2δ Q−Q 0� �
=Q 02

: ð5Þ

whereN and V are, respectively, the number of atoms and the volume of
system, Q′ are the allowed vectors in the reciprocal cell, and 〈b〉 is the
average of the coherent scattering lengths. The 1/Q′2 factor stems from
the angular integration over all the possible Q′ orientations [15]. F(Q)
contains the correlations between scattering nuclei and is given by

F Qð Þ ¼
XN
j¼1

bj exp iQR j

� �
; ð6Þ

where Rj denotes the position of atom j in the unit cell.
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