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Because of the effect of the enlarging process of errors in low temperature region, the analytical solutions of a
cubic equation of state (CES) lead to illogical results. To overcome this problem,we recommend an enhanced an-
alytic method, in this paper. Up to now, there is not any analytical method for this problem. In the present study,
the general cubic equation x3 + Bx2 + Cx + D = 0 is transformed into simple equation γ3 − βγ + β = 0. For
β ≥ 27/4, then the three roots are real. To compare, as an example, for 1-butene at T = 112.3 (K) and P =
3.79 × 10−9(Pa), the empirical value of the molar volume is 72.00 (m3mol−1). By using Patel–Teja (PT) CES,
themolar volume value is obtained as−342.3 from traditional analytic method and 73.88 from both the new in-
tensified analytic method and the iterative Newton–Raphson method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The CESmodels are useful formulas for analyzing and correlating the
thermodynamic equilibrium state of simple fluids and their mixtures,
with agreeable approach [1–5]. Generally, for a given substance, the
CES is an empirical relation of the pressure P, the temperature T and
the molar volume v consist of a repulsive term and an attractive term
as follows [6]:

P T ; vð Þ ¼ RT
v−b

− α Tð Þ
v−cð Þ v−dð Þ ð1Þ

where R is the gas constant. b, c and d are constant parameterswhich are
obtained based on the kind of equation. In Eq. (1), α(T) is a function and
it has many empirical definitions in the literature. By expressing Eq. (1)
in terms of molar volume, the following equation is obtained:

v3− bþ cþ dþ RT
P

� �
v2 þ bcþ bdþ cdþ RT

P
cþ RT

P
dþ α Tð Þ

P

� �
v

− bcdþ RT
P

cdþ α tð Þ
P

b
� �

¼ 0:
ð2Þ

Eq. (2) is referred to as cubic in molar volume. Additionally we can
substitute the definition of compressibility factor (i.e., Z = Pv/RT) into
Eq. (2) and obtain different cubic equations in Z.

Thefirst CESwas recommended by van derWaals in 1873 as P(T, v)=
RT/(v− b)− α(T)/v2. It has been proven that the original van der Waals

CES cannot provide simultaneous accurate predictions for all the proper-
ties of pure fluids and their mixtures. But, the most CES models (e.g.,
Peng-Robison CES in 1976 as P(T, v) = RT/(v − b) − α(T)/(v2 + 2bv −
b2) being used widely today for practical design purposes have been de-
rived from van der Waals CES [7].

Forfinding the roots of Eq. (2), the analyticalmethods can solve their
three roots simultaneously. One of the relevant math formulas is the
well-known formula due to Ferro and Tartaglia, communicated by
Gerolamo Cardano in 1545 [8,9].

Cardano's method involves division. Thus it can encounter near “0/0”,
resulting insignificant numerical errors. Thus it may encounter a numeri-
cally unstable case. Lagrange in 1770 gave the newmethod for solving the
three roots of a cubic equation, with 18 possible interpretations [10]. The
Lagrange formula, does not require division and thus avoids the “0/0”
case. In the Lagrange formula some interpretations are correct (yielding
the solutions), But the others are not. Zhao et al. [11] proposed a convec-
tionwhichprovided correct interpretations of the Lagrange formula for all
cubic equations with real coefficients.

Zhi and Lee [12] revealed by several examples that, in low tempera-
ture region, the analytical solutions of CES lead to irrational results,
while the iterative solutions of the CES, usingNewton–Raphsonmethod
produced valid results. They appeared that errors caused by the limita-
tion of significant figures of the computer languages are revealed, and a
magnification of errors is definedwhich amain factor is bringing out the
irrational results of the analytical solution of CES. Salim [13] showed
that, in the case of low temperature region, the coefficient D in cubic
equation x3 + Bx2 + Cx + D = 0 is very small. Therefore the main
root is also small and becomes so close to zero. Thus, by eliminating
the term of x3 in x3 + Bx2 + Cx + D = 0, then the main root can be
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found via the approximated equation of the form Bx2 + Cx + D = 0.
Loperena [14] proposed an iterative refinement of the solution obtained
by the analytical method. This method allowed one to take advantage of
the calculations fulfilled in the application of the analytical solution. His
numerical results show that the proposed iterative refinement proce-
dure is an attractive and numerical inexpensive option and can be easily
incorporated into any process simulation program, that use Cardano's
method, without significant modifications.

Up to now, as mentioned above discussions, there is not any
completely analytical method for this problem. To notice to complexity
and overhead of analytical methods, it has been recommended to use
the numeric iterative methods. In this paper, we describe an enhanced
completely analytic method for solving the general cubic equation
x3 + Bx2 + Cx + D = 0 consists of real coefficients. We verify this
new method with the miscellaneous examples.

2. New analytic solution and the miscellaneous examples

An arbitrary cubic equation which consists of real coefficients B, C
and D is as follows:

x3 þ Bx2 þ Cxþ D ¼ 0: ð3Þ

In Eq. (3), one of the three roots is real. To find it, let β ¼ − C3
1

D2
1
,

where C1 = 9C − 3B2 and D1 = 2B3 − 9BC + 27D. Make the substi-

tution x ¼ − 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γð ÞD1

3
p þ B
� �

or x ¼ − 1
3

D1
C1
γ þ B

� �
. By this substitu-

tion, Eq. (3) is transformed as the following simple equation for γ:

γ3−βγ þ β ¼ 0: ð4Þ

To find γ, we arrange Eq. (4) into the functional form as β γð Þ ¼ γ3

γ−1.

Fig. 1 shows the sketch of β(γ). It is seen that for β≥ 27
4 , then all three

roots are real. Therefore, Eq. (3) has three real roots (i.e., x1, x2, x3).
Also, for β b 27

4 , Eq. (3) has one real root (i.e., x1). In this case, the others
are conjugate imaginary roots (i.e., x2, x3).

Therefore, like a new analyticmethod, for finding the one real root of

a cubic equation, letx1 ¼ − 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γð ÞD1

3
p þ B
� �

orx1 ¼ − 1
3

D1
C1
γ þ B

� �
be

one real root of Eq. (3), where γ is related with the left branch of the
curves β in Fig. 1 (i.e., γ ≤ 1); and it is obtained from the following

formula as:

γ ¼ −β
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

4
−β3

27

s0
@

1
A

1
3

þ −β
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2

4
−β3

27

s0
@

1
A

1
3

; for β ≤ 27
4

γ ¼ −2

ffiffiffiffi
β
3

r
cosθ; θ ¼ 1

3
cos−1 9ffiffiffiffiffiffiffiffiffi

12β
p

 !
; for β ≥ 27

4
:

8>>>>><
>>>>>:

ð5Þ

It is clear that (see Fig. 1), when β → − ∞, then γ → 1. Also, when
β → + ∞, then γ → − ∞.

To obtain the two formulas in Eq. (5), an analytic method was
completely used. Thismethod has been described in Appendix A. There-
fore, through an intensified analytic solution, the real root of the cubic
Eq. (3) is captured.

The other roots of Eq. (3) i.e., x2, x3 can be calculated analytically
from the following quadratic equation as:

x2 þ Bþ x1ð Þx− D
x1

¼ 0: ð6Þ

Note that, in order to reach the high precision of the solutions, espe-
cially in low temperature region, the two other roots may be obtained
from Eq. (6). In this paper, all solutions were conducted by Microsoft
Excel, 2003.

Example 1. In equation: x3 − 3x2 + 4x − 2 = 0, the coefficients are:
B = −3, C = 4 and D = −2. Then, C1 = 9 and D1 = 0. Therefore,
β = − ∞. Thus, from Fig. 1: γ = 1. Therefore, x1 = − B/3 = 1. Finally
from Eq. (6): x2 − 2x + 2 = 0. Then, x2 = 1 + i and x3 = 1 − i.

Example 2. In equation: x3 + 6x2 + 3x − 10 = 0, the coefficients are:
B=6,C=3,D=−10. Then C1=−81 andD1=0. Therefore,β=+∞.
Thus, from Fig. 1: γ = − ∞. Therefore, x1 = − B/3 = −2. Finally from
Eq. (6): x2 + 4x − 5 = 0. Then, x2 = 1 and x3 = −5.

Example 3. In equation: x3 − 2x2 − 5x + 6 = 0, the coefficients are:
B = −2, C = −5, D = 6. Then C1 = −57 and D1 = 56. Then, β =
59.0539. Thus, from Eq. (5):γ=−8.1429. Therefore, x1=−2.0000. Fi-
nally from Eq. (6):x2− 4x+3=0. Then, x2 = 1.0000 and x3= 3.0000.

Example 4. The cubic equation: (x− 1)2x= x3− 2x2 + x=0. The co-
efficients are: B=−2, C= 1, D= 0. Then C1 =−3 and D1 = 2. Then,
β=6.75. Thus, from Eq. (5):γ=−3. Therefore, x1= 0. Finally from so-
lution of the equation:x2 − 2x + 1 = 0, we have:x2 = x3 = 1.0000.

Example 5. The molar volume of carbon dioxide (CO2) at P =
10 atm and T = 300 K, by using the van der Waals CES (P(T, v) =
RT/(v − b) − α(T)/v2), is the cubic equation as: v3 −
2.5046v2 + 0.3598v − 0.0155 = 0. This equation and another
equation in the form of v3 − 7.8693v2 + 13.3771v − 6.5354 = 0

Fig. 1. The curve of β(γ).

Table 1
Results for example 5.

Case I: v3 − 2.5046v2 +
0.3598v − 0.0155 = 0

Case II:
v3 − 7.8693v2 +
13.3771v − 6.5354 = 0

Newton (numeric)

Iterations→

2:4616
2:3633
2:3546
2:3545→v1

								 Iterations→

7:3807
6:2992
5:8355
5:7397
5:7357→v1

										
Ostrowski [15] (numeric)

Iterations→ 2:4616
2:3545→v1

				 Iterations→
7:3807
5:8187
5:7357→v1

						
New (analytic) β ¼ 6:7165

γ ¼ −2:9934
v1 ¼ 2:3545

β ¼ 6:7396
γ ¼ −2:9977
v1 ¼ 5:7357
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