
Studies on the effect of curvature on the surface properties of nanodrops

Anjan R. Nair a,b, Sarith P. Sathian c,⁎
a Mechanical Engineering Department, Government College of Engineering Kannur, Kannur 670563, India
b Computational Nanotechnology Lab, School of Nano Science Technology, NIT-Calicut, Kozhikode 673601, India
c Department of Applied Mechanics, IIT Madras, Chennai 600036, India

a b s t r a c ta r t i c l e i n f o

Article history:
Received 18 September 2013
Received in revised form 12 February 2014
Accepted 25 February 2014
Available online 12 March 2014

Keywords:
Molecular dynamics (MD)
Interfacial tension
Nanodrops
Test area simulation method (TASM)
TPT method

We present the results from the molecular dynamics (MD) simulations of nanodrops. A thermodynamic based
method known as test area simulation method (TASM) developed by Gloor et al. [J. Chem. Phys. 123, 134703
(2005)] is employed to determine the surface tension. The results show that the value of surface tension de-
creases with the decrease of size of the drop. We have also determined the Tolman's gap and surface entropy
of nanodrop–vapor interfaces for a better understanding of curvature effects on surface tension. Both these pa-
rameters are found to be size dependent properties. The thermodynamic perturbation theory (TPT) method is
employed to validate the size effect of drops on surface tension. Second order approximation of TPT is found to
be in good agreement with central difference TASM results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For temperatures and pressures below the values at critical point, a
fluid can exist in the form of a dense liquid coexisting with its vapor
phase. The surface tension of droplet–vapor interface is an important
chemico-physical property which plays an important role in the phe-
nomenon such as nucleation, wetting, capillarity, etc. The earliest stud-
ies on liquid droplet surrounded by a vapor phasewere done by Laplace,
wherein it was proved that the surface tension of this liquid–vapor
interface is the source for the spherical surface of the droplet [1,2].

According to this theory, when two fluids in equilibrium are separat-
ed by a spherical interface of radius R, the pressure of thefluid inside, pα,
differs from that of fluid outside, pβ. The condition for mechanical
equilibrium is established by a simple relation given as:

ΔP ¼ pα−pβ ¼ 2γ
R

: ð1Þ

The droplet is thus stabilized by a pressure difference over the
curved interface which is balanced by the surface tension (γ), that
acts as the contracting force. For a planar interface, the surface tension
(γ∞) can be considered as the integral taken over the interface zone

(along z-axis) of the differences between the normal (PN) and tangential
pressures (PT) to the interface [3].

γ∞ ¼
Z ∞

−∞
PN zð Þ−PT zð Þ½ �dz ð2Þ

For a homogeneous phase, the above expression becomes zero,
while at the interface the difference in pressure tensor creates the ‘sur-
face tension’ effect. By hypothetically strip cutting the surface of drop,
the above equation can be applied to spherical drops as [4]:

γs ¼
Z ∞

0

r
Rs

� �2
PN rð Þ−PT rð Þ½ �dr: ð3Þ

The effect of the surface curvature on the properties of small drops
has been studied previously using MD [5–7]. Studies have shown that
the pressure tensor difference can be considered as a function of the
drop radius [8,9]. Surface tension values in these studies were obtained
using the Kirkwood–Buff relation [3] for the pressure tensor.

However for the above mentioned method, it is necessary to have a
description of the interface which remains meaningful on a molecular
scale. For planar interfaces, the stress tensor description can be easily
applied andmost of the studies reported in literature have been obtain-
ed using this method. On the contrary, when the interface is curved, the
evaluation of stress-tensor becomes tedious, especially at the nanoscale
interfaces. Also it is important to understand how the surface energy
varies with curvature, which is difficult to be analyzed using pressure
tensormethods. Free energymethod, based on the thermodynamic def-
inition is thus an alternate option to determine surface tension.
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Thermodynamic based methods are expected to provide better under-
standing on the effect of the curvature on the surface tension.

Generally, interfaces do not assume planar shape but rather exhibit
some curvatures and themagnitude of surface tension is affected by in-
terfacial curvature. Hence the concept of Tolman's length (δL) is used,
which is defined as the extent by which the surface tension of a small
liquid drop (γs) deviates from its planar value (γ∞).

From the Gibbs–Tolman–Koening–Buff equation:

1
γs

dγs

dRs
¼

2δG
R2
s
1þ δG

Rs
þ 1

3
δG
Rs

� �2
� �

1þ 2δG
Rs

1þ δG
Rs
þ 1

3
δG
Rs

� �2
� � ð4Þ

where δG is known as the Tolman's gap and is defined as: δG = Re = Rs.
The Tolman's gap is a function of surface of tension (Rs) and tempera-
ture. This surface of tension is the distance parameter at which Laplace
equation (Eq. (1)) is satisfied. The equimolar radius (Re) is the location
of the equimolar dividing surface, where the density becomes the aver-
age of bulk gas (ρgas) and bulk liquid densities (ρliq). The equimolar radii
of the drop are calculated using the formula:

R3
e ¼ 1

ρgas−ρliq

Z ∞

0
r3

dρ rð Þ
dr

dr ð5Þ

While the Tolman's length is related to Tolman's gap by the relation:

δL ≡ lim
Rs→∞

δG ≡ lim
Rs→∞

Re−Rsð Þ: ð6Þ

The Tolman's gap δG and the Tolman's length δL are of nanoscale
dimensions.

The final expression can be reduced as:

γs

γ∞
¼ 1

1þ 2δL
Rs

þ… ¼ 1−2δL
Rs

þ… ð7Þ

where γ∞ is the surface tension for planar interfaces.
It is difficult to estimate Tolman's length experimentally. Its depen-

dence on temperature and its sign is still a matter of controversy.
For example, in the case of a macrodroplet or gas bubble, whether

their surface tension is greater or less than the planar one, it is still an
open question. Similarly for LJ fluids and the like, the classical density-
functional theory (DFT) predicts δL b 0 [10,11], whereas molecular dy-
namics simulation studies [6,12] and other semi-phenomenological
theories [13] show that δL N 0.

In this study, a series of MD simulations in which nanodroplets of
different radii, surrounded by a saturated vapor phase, are studied.
We have employed test area simulation method (TASM) [14], which is
a thermodynamic based approach, to predict the surface tension and
Tolman's gap of drops. Attempts have been made to validate the results
using thermodynamic perturbation theory (TPT). Details of TASM and
the MD simulation methodology are presented in the following sec-
tions. The included studies on TPT and surface entropy enabled a better
understanding of curvature effect on surface tension and explore subtle
effects of curvature free energy.

2. Methodology

2.1. TASM

The thermodynamic approach involves calculating the thermody-
namic free energy difference between two systems to estimate the
interfacial tension. Using TASM [14], which calculates free energy affect-
ed by slight perturbation of the reference system, the interfacial tension
is calculated. In this method, the change in free energy was evaluated
from the perturbation of the systems without affecting properties of

reference system. Liquid–vapor interfacial tension (γvl) is thus mea-
sured by estimating the change in free energy for an infinitesimal
change in area.

Finite difference techniques such as forward, backward and cen-
tral difference (CD) can be used for calculating this derivative. The
use of a CD approximation has been found to improve the accuracy
of the computed surface tension [14]. It also allows one to circum-
vent the problem associated with an asymmetry in the free-energy
differences which is inherent in systems of particles interacting
through discontinuous potentials. For implementing the test-area
method using central difference method, three simulation cells are
required, each constructed with an equal number of molecules, but
different surface areas. The first step of this method is to simulate a
system equilibrated to a reference state system 0 with interfacial
area A0. A test-area change is then performed to generate
two perturbed state systems such that A1 = A0(1 + ΔA) and A2 =
A0(1 − ΔA) keeping overall volume of the system a constant.

From the thermodynamic definition of interfacial tension [1]:

γ ¼ ∂F
∂A

� �
NVT

ð8Þ

where ∂F is the free energy change associated with area change ∂A.
The change in free energy ΔF can be expressed in terms of system
change 0 → 1 as:

ΔF0→1 ¼ F1−F0 ¼ −kT ln
Q1

Q0

� �
ð9Þ

where Q represents the partition function.
The partition function ratio can be written as:

Q1

Q0
¼ z1

z0
¼ ∫drN exp −U1=kTð Þ

∫drN exp −U0=kTð Þ
ð10Þ

where U is the configuration energy and z is the configuration integral.
For a closed system, this U is the Hamiltonian of the system.

z1
z0

¼ ∫drN exp −U0=kTð Þ exp ΔU=kTð Þ
∫drN exp −U0=kTð Þ

ð11Þ

z1
z0

¼ exp −ΔU=kTð Þh i0 ð12Þ

where ΔU = U1 − U0..
The central difference approximation for the interfacial tension can

be written as:

γ ¼ ∂F
∂A

� �
CD

¼ f F0 þ ΔFð Þ− f F0−ΔFð Þ
2ΔA

: ð13Þ

Thus for the changes in configuration energy of these perturbations de-
noted by ΔU+ = U(A+ ΔA)− U(A) and ΔU− = U(A− ΔA)− U(A), re-
spectively, the interfacial tension can be obtained from the expression as
follows:

γ ¼ lim
ΔA→0

−kT
2ΔA

ln exp −ΔUþ

kT

� �� 	
− ln exp

ΔU−

kT

� �� 	� �
: ð14Þ

2.2. Molecular dynamics (MD)

We have performed MD simulations [15–17] to model the system
for estimating the nanodrop–vapor interfacial tension. The LAMMPS
[18] package was utilized for the simulations. A monoatomic LJ
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