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1 An analytical study of unsteadymotion of non-spherical particle in plane
2 of Couette flow
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20An analytical solution of the unsteady two dimensionalmotion of a non-spherical particle in the plane of Couette
21flow was acquired using the finite parameter optimal homotopy analysis method. To achieve the best accuracy
22and ensure the convergence of the results, the averaged residual errorswere obtained andminimized. The effects
23of different initial guesses and the number of convergence-control parameter (k) on the accuracy and efficiency
24of the problemwere studied in detail. It was shown that the currentmethod gives completely reliable results and
25there is no need to compare the results to those of similar numerical or experimental techniques. Furthermore,
26the effects of different parameters including sphericity and the proportionality constant on three different base
27fluids namely: water, ethylene-glycol, and glycerin were investigated. Based on the analytical results, it was
28shown that non-spherical particles are slower to settle rather than spherical particles and the settling velocity
29of the particles in the glycerin is much lower than that in the ethylene-glycol and the water base fluids.

30 © 2014 Published by Elsevier B.V.
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35 1. Introduction

36 Sedimentation and falling of solid particles in gases and liquids are
37 natural phenomena during many industrial processes [1,2]. The sedi-
38 mentation refers to the tendency of suspended particles in fluids to set-
39 tle due to forces acting on them. Primary sedimentation occurs during
40 sediment transport and deposition in pipe lines [3,4], within alluvial
41 channels [5,6], adherence of particles to gas turbine blades [7] and dur-
42 ing chemical and powder processes [8,9]. In many of these processes,
43 directing the particles in the fluid is often essential in order to design
44 or improve the process. The majority of the previous studies have con-
45 sidered the steady-state conditions, where the particles achieved their
46 terminal velocity. However, for practical problems, such as raindrops,
47 for measuring the terminal velocity and the viscosity, the falling ball
48 method is used, which requires how the particles reach the settling ve-
49 locity. There is thus a certain need to consider the unsteady motion of
50 particles, comprehensively.
51 Several recent studies have investigated the physical significance of
52 some analytical methods, including Homotopy Perturbation Method
53 (HPM) [10,11], and Variational Iteration Method (VIM) [12,13], and
54 their compatibility with physical problems. For instance, Jalaal et al.
55 [14] have used HPM to study the unsteadymotion of a spherical particle

56falling in a Newtonianfluid. Additionally, Torabi and Yaghoobi [15] have
57implemented Padé approximants to the HPM to find the accelerated
58motion of a single rigid spherical particle, moving in an incompressible
59Newtonian media. Meanwhile, Jalaal et al. [16] used an alternative
60series-based method called the Homotopy Analysis Method (HAM) to
61solve the nonlinear particle equation of motion whose results are accu-
62rate and reliable. In another study, Jalaal et al. [17] presented an HPM
63solution of a spherical particle in plane of Couette flow. Then, a series
64of bold works by Yaghoobi and Torabi [18] and Jalaal et al. [17] were
65done to find themost suitable, efficient, and reliable analytical methods
66to describe the particle motion in different conditions.
67Recently, Hamidi et al. [19] applied the HPM-Padé to solve the
68coupled equations of a spherical solid particle's motion in plane of
69Couette flow. Then, Torabi et al. [20] extended their solution with
70Boubaker polynomial expansion scheme (BPES). However, irregular
71non-spherical particles are found in most engineering fluids and indus-
72trial particulate flows. Recently, Malvandi et al. [21] studied the
73unsteady motion of a rigid spherical particle in a quiescent shear-
74thinning power-law fluid by coupling the HPM and the VIM. In this
75paper, which can be considered as an extension of [19], we have focused
76on the unsteady motion of a rigid non-spherical particle in a plane of
77Couette flow. Presenting the governing equations as two coupled non-
78linear ordinary differential equations, the analytical finite-parameter op-
79timal homotopy analysis solution has been providedwhich to the best of
80the authors' knowledge have not been communicated so far. To check
81the accuracy and the convergence of analytical results, the averaged
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82 residual errors have been obtained and minimized. It is hoped that the
83 obtained results present useful information for applications as well as
84 complementing the previous studies.

85 2. Mathematical formulations

86 Consider the motion of a non-spherical particle in the narrow gap
87 between two infinite horizontal parallel plates filled with a Newtonian
88 fluid. The top plate is moving at speed U = U0 and the bottom plate is
89 kept stationary which is known as “Couette flow”. The geometry of
90 the problem is shown in Fig. 1. The particle will rotate with a constant
91 angular velocity given by one-half of the curl of the fluidmotion. The di-
92 rection of rotation is clockwise as seen by an observer for whom the
93 flow is from left to right [22]. In addition, the gravity and the buoyancy
94 effects will be assumed negligible. In fact, the combined effects of iner-
95 tia, drag, and lift forces determined the particle's motion. The lift force
96 includes two components: one due to particle's rotation, and the other
97 due to the shear stresses, as explained by Rubinow and Keller [23] and
98 Saffman [24], respectively. Thus, the lift forces of particles due to the ro-
99 tation and shear stresses may be obtained as follows, respectively:

due to rotation FL1 ¼ 1
2
πa3ρα y

�
;αy− x

�
;0

� � ð1Þ

101101 and,

due to shear FL2 ¼ 6:46ρa2
ffiffiffiffiffiffiffi
αυ

p
0;αy− x

�
;0

� � ð2Þ

where a, ρ, υ, x
�
, and y

�
are the particle equivalent volume radius, density

102 of the fluid, kinematic fluid viscosity and particle's velocity in the x- and
103 y-directions, respectively. α ¼ U0

h is a positive proportionality constant
104 with the dimension of (1/t) in which h is the distance between the
105 plates. The inertia force is simply themass of the particle times its accel-
106 eration ẋ̇; ẏ̇;0ð Þ:

FI ¼ mp ẋ̇; ẏ̇;0ð Þ ð3Þ

108108 where mp signifies the particle mass. Furthermore, the added-mass ef-
fect which is due to the acceleration of fluid around the particle could

109 be written as follows:

Fv ¼ mv ẋ̇; ẏ̇;0ð Þ ¼ 2
3
πa3ρ ẋ̇; ẏ̇;0ð Þ: ð4Þ

111111

Calculating the drag force requires choosing an adaptable drag coef-
112ficient. The proper formulation of the drag coefficient in a wide variety
113of Reynolds numbers, shapes, and sphericities is the main issue in this
114problem. Up to now, several correlations in terms of Reynolds number
115Re and sphericity ϕ have been reported in the literature [18]. Here,
116Chien's correlation [25], valid in the ranges of 0.01 b Re b 10000 and
1170.2 b ϕ b 1 for different shapes of particle is used, which can be
118expressed as

CD ¼ 30
Re

þ 67:289e−5:03ϕ
: ð5Þ

120120

The relative velocities of the fluid and particle are obtained as Ur ¼
121x

� −αy; y
�
;0

� �
; so, Eq. (6) is defined to determine the drag force:

FD ¼ 1
2
πa2ρU2

r CD ¼ 7:5πaμ x
� −αy; y

�
;0

� �
þ 33:6445e −5:03ð Þϕπa2ρ x

� −αy
� �2

; y
�� �2

;0
� �

ð6Þ

123123where μ is the fluid viscosity. The equations of motion of particle have
been obtained by the second-law Newtonian formula in the x- and y-

124directions:

FI þ Fv ¼ FL1 þ FL2−FD: ð7Þ
126126

Therefore, the governing equations are determined as:

mp þmv

� �
ẋ̇¼ 1

2
πa3ρα y

� − 7:5πaμ x
� −αy
� �þ 33:6445e −5:03ð Þϕπa2ρ x

� −αy
� �2� �

ð8Þ

128128

129

mp þmv

� �
ẏ̇¼ 1

2
πa3ρα þ 6:46ρa2

ffiffiffiffiffiffiffi
αυ

p� �
� αy− x

�� �
− 7:5πaμ y

� þ33:6445e −5:03ð Þϕπa2ρy
� 2

� �
: ð9Þ

131131

Eqs. (8) and (9) can be abbreviated in the following forms:

ẋ̇−A y
� þB x

� −αy
� �þ D x

� −αy
� �2 ¼ 0 ð10Þ

133133

134

ẏ̇þ B y
� þDy

� 2 þ Aþ Cð Þ x
� −αy
� � ¼ 0 ð11Þ

136136where the coefficients A–D are defined as:

A ¼ 1

2 mp þmv

� �πa3ρα : 1=s½ �; B ¼ 7:5πaμ

mp þmv

� � : 1=s½ �

C ¼ 6:46ρa2
ffiffiffiffiffiffiffi
αυ

p

mp þmv

� � : 1=s½ �; D ¼ 33:6445e −5:03ð Þϕπa2ρ

mp þmv

� � : 1=m½ �:
ð12Þ

137To obtain a non-trivial solution, it is essential to specify the non-zero
138initial conditions. The following might represent either injection of the
139particle into the fluid or statistical fluctuations:

x t ¼ 0ð Þ ¼ 0; x
�
t ¼ 0ð Þ ¼ u0

y t ¼ 0ð Þ ¼ 0; y
�

t ¼ 0ð Þ ¼ v0:
ð13Þ

141141

It should be stated that the order of the ODE system Eqs. (10)–(11)
142can be reduced twice by choosing x

� −ay and y
�
as new independent var-

143iables. However, in view of showing the strength of our analyticalmeth-
144od, we leave this transformation and the results will be obtained for x
145and y.

1463. Analytical approximations

147Liao [26–28] introduced Homotopy Analysis Method (HAM) to
148obtain analytical approximations of strongly nonlinear differentialFig. 1. Schematic illustration of the physical model.
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