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Neutron diffraction experimentwith isotopically substituted substances is a powerful approach claiming to yield
unambiguous information about the local atomic structure in disorderedmaterials. This information is expressed
in the partial structure factors, and extracting them from a series of measurements requires solution of a set of
linear equations that is affected by experimental errors. In this article, we suggest amethod for the determination
of the optimal set of H/D compositions with or without taking into account the experimental error. For the case
of water, our investigations show that the selection of the isotope concentrations and the distribution of
measurement time among the various samples have a critical role if one wants to utilize the limited neutron
beam time efficiently.
It iswell known thatmeasurements of pureH2O introduce fairly large errors in the partial structure factors due to
its very strong incoherent scattering. In water and methanol as examples, we investigated the propagation of
random errors to the partial structure factors using partial pair-correlation functions from molecular dynamics
simulation. It is shown in the example of water that it is not worthwhile to measure pure H2O.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a disordered material containing n distinguishable elements,
the n × (n + 1)/2 independent structure factors can be determined
in principle from the same number of scattering experiments
through the inversion of a set of linear equations. Sets of independent
scattering intensities can be obtained by isotopic substitution in the
case of neutron scattering. The general principles of the isotopic substi-
tution technique are rather simple. Samples with different isotopic
compositions (isotopes with markedly different coherent scattering
lengths) yield different diffraction patterns while the underlying struc-
tural features remain unchanged. The neutron diffraction isotopic
substitution (NDIS) method has been described in several articles [1];
it has been applied successfully for many years to a wide range of
liquids, e.g., water [2], ethanol [3], aqueous glycine solution [4], formic
acid [5], ethanediol [6], aqueous liquid mixtures [7], aqueous solutions
[8], and polymer electrolytes [9], as well as to glassy materials. Howev-
er, some important unresolved issues remain. In particular, the sensitiv-
ity of the final results (partial structure or correlation functions) [10] to
the details of the sample preparation and handling aswell as to the data
treatment (normalization, correction term) remains an open question.

The technique has been applied successfully for many years as a
method of obtaining the partial structure factors of systems of type
RXn, where R denotes a central part of this system without substitution
and Xn denotes the isotope to be substituted. For example, in the case of
water or methanol, the oxygen atom or the CD3O group can be denoted
as R and X means hydrogen or deuterium.

Matrix formalism can be used to describe the relation between
experimental total and partial structure factors or radial distribution
functions

F ¼ W � Y ð1Þ

where a columnvector yj=(RR,RXn,XnXn)T ofmatrixY contains the par-
tial structure factors (psf) or partial pair-correlation functions (ppcf) RR,
RXn, and XnXn to be obtained at the j-th s or r value (inverse or direct
space variables), W is the neutron scattering weighting matrix. The
column vectors of matrix F are fj = (f1,f2,f3)T for the independent
experimental total structure functions at the j-th s or r variable. For
the sake of simplicity we use the notation fj for the j-th column vector
of F and we use fi, if the i-th element of one of the vectors is concerned.
f1, f2, and f3 mean for example results on samples with different isotopic
compositions, e.g., for water D2O, H2O, and 0.64H2O + 0.36H2O, where
the latter is called “null mixture”.
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The rows of the matrixW, WRR,i, WHH,i, WRH,i are the corresponding
elements of the neutron scatteringweightmatrix, and they can be given
in the following form

WRR;i ¼ b2
RR

WHH;i ¼ xH;i � bH þ 1−xH;i
� �

� bD

� �2
WRH;i ¼ 2 � bRR � xH;i � bH þ 1−xH;i

� �
� bD

� � ð2Þ

where xH,i is themole fraction of H, and bRR, bH and bD are the scatter-
ing lengths of the R group, hydrogen (−0.376 fm) and deuterium
(0.664 fm), respectively. Obviously, the elements of the W matrix
only depend on the mole fraction of hydrogen.

There are several methods to solve Eq. (1). Throughout this work,
we used the singular value decomposition (SVD) method to solve the
sets of linear equations. This is a standard method to characterize how
the experimental and systematic errors propagate into the results.
According to this method, the inverse of W is

W−1 ¼ Vdiag 1=σ ið ÞUT ð3Þ

where V and U are orthogonal matrices and diag(1/σi) is a diagonal
matrix formed from the σi singular values of the W matrix. In this
case, if the right side of the Eq. (1) has a certain error, then

δy j ¼
X
i

δf jui

σ i
ð4Þ

where the ui and vi are the orthonormal column vectors ofU and V. This
equation shows that yj will be most sensitive to the error associated
with the smallest singular value. The components of vj are the
projections to the RR, RXn and XnXn directions, respectively.

In a previous paper [11], we studied how an inequality known
from linear algebra can be used for the determination of the inherent
uncertainties of the psf-s or ppcf-s determined from neutron diffraction
isotopic substitution experiments. This inequality establishes a relation-
ship between the relative uncertainties of the partial pair-correlation
functions or partial structure factors, the norm of the neutron scattering
weighting matrix and the relative error of the experiments, as given by
Eq. (4) of [11]:

δy j

��� ���
y j

��� ��� ≤ Wk k � W−1
��� ��� δf j

��� ���
f j
��� ��� ð5Þ

The quantity ||W|| × ||W−1||, denoted as κ hereafter, is known as
the condition number, and it is a measure of the error amplification
due to the employed inversion. A set of linear equations is termed
“well conditioned” when the conditional number is small [10c,12]. The
theoretical smallest value is κ = 1. If the solution is very sensitive to
the values of the coefficients, the problem is “ill conditioned.” It is
expected in the cases, if the matrix is nearly singular, i.e., some of its
rows are almost linearly dependent. The second term of the right
hand side of Eq. (5), || δfj ||/|| fj ||, is related to the relative uncertainties
in the experiment. During our work, there is an underlying assumption
that all the errors are confined to the experimental vector fj. Unfortu-
nately, this assumption may be unrealistic; errors in scattering lengths
and mole fractions may incorporate into the inequality an additional
term, which would be proportional to ||δW||/||W||, where δW is the
uncertainty of theWmatrix.

We used in our test cases the Euclidean vector and matrix
norms [12]

fk k2 ¼
X
i

f 2i

 !0:5

ð6Þ

Wk k2 ¼
X
i; j

w2
ij

0
@

1
A0:5

ð7Þ

In the case of the Euclideanmatrix norm, || ||2, the condition number
can be expressed as

κ ¼ σmax

σmin
ð8Þ

where σmax and σmin are the largest and smallest singular values of the
weightingmatrix.We chose the SVDalgorithm to solve the sets of linear
equations, because it provides the singular values to calculate condition
number, as well.

The relative experimental error (sampling errors, absolutisation
error, modelling errors, and instrumental errors, coming mainly from
the H atom due to its large inelastic scattering power) is defined as

I jtot ¼ I jcoh;selfscat þ I jincoh;selfscat þ I jscat

I jscat ¼
X
i

bbiN

 !2

f j≅I
j
scat

df j≅
I jtot
I jscat

ð9Þ

where bi is the neutron scattering length of atom i; Iscat denotes the
scattering power and Itot,j is the total scattering (coherent, incoherent)
intensity of the j-th experiment. This error mainly depends on the
inelasticity of the scattering centre. The scattering lengths for the
investigated systems are given in Table 1.

With the above mentioned equation, it should be possible to mini-
mize the upper limit of the solution error, i.e., the resulting psf-s or
ppcf-s, by determining the set of xH,I mole fractions for which the condi-
tional number of the neutron scatteringweightingmatrix has aminimal
value.

In our previous study [11] we applied our numerical estimations of
the optimumset of xH for several systems investigated earlier by isotope
substitution experiments. An additional constraint was used there,
namely, that the condition number should be minimal when one
of the measurements is made on a completely deuterated solution.
We showed also that if the presented method is applied to an
over-determined set of equations (i.e., containing more equations
than unknowns), the condition number is significantly reduced in
all cases.

2. Uncertainty analyses in NDIS experiments using optimization

In the first part of the present work, we applied a full optimization
process (using the simplex algorithm) without any constraint for any
concentration. We investigated the extreme values of the condition
number (first part of the right side in Eq. (5)) as a function of compo-
sitions andwe obtained the optimum set of hydrogen concentrations
for which the condition numbers are minima for both the uniquely
determined and the over-determined equations.

The variation of the condition number with respect to the increasing
number of experiments is shown in Fig. 1 in the case of water. The cor-
responding compositions are collected in Table 2. We apply a notation

Table 1
The neutron scattering lengths of the investigated systems [13].

Water Methanol Ethanol Ethane-diol

bR (10−14 m) 0.583 3.248 5.246 3.828
bH (10−14 m) −0.748 −0.374 −0.374 −0.748
bD (10−14 m) 1.334 0.667 0.667 1.334
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