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Two-phase Hele-Shaw problem is studied as a model for a two-dimensional radially growing interface.
Instead of the Young–Laplace equation, which has been employed in almost all previous studies concerning
Hele-Shaw problem, we apply the normal stress balance and derive the new mode coupling equation for
perturbation of the interface. In the present research, weakly nonlinear analysis is carried out and time evo-
lution of the interfaces is numerically calculated. These numerical results suggest that our model reflects
more exactly the nonlinear features of a radially growing interface, rather than the previous ones based
on the Young–Laplace equation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and model

From the growth of a snow crystal to the flow of shale gas, there is
a wide variety of examples related with the two-dimensional inter-
face growth. Such phenomena have been intensively investigated
as Hele-Shaw problem [1–8]. Hele-Shaw problem is concerned with a
time evolution of an interface in a Hele-Shaw cell, which consists of
two parallel plates with narrow gap filled with viscous fluids. Though
the formulation of the problem is quite simple, it covers various areas
of research, for instance, pattern formation of the unstable interface
[9,10], physical properties of liquids [11], enhanced oil recovery in the
engineering [3,12], and integrable systems in the theoretical physics
[13–16]. It is well known that if a viscosity of the displacing fluid is
smaller than that of the displaced one, then the interface between the
fluids becomes unstable, so called Saffman–Taylor instability [1]. The
pattern formed by the unstable interface is referred to as the viscous
fingering. Here we focus on the viscous fingering which is observed in
a radially growing interface in a Hele-Shaw cell, and investigate a
mathematical model.

Clearly, the assumption that thefluids are incompressible and irrota-
tional implies that Hele-Shaw problem is equivalent to solving the
Laplace equations. As boundary conditions for the Laplace equations,
almost all previous studies have adopted the kinematic boundary condi-
tion and the Young–Laplace equation [1,2,17,18]. However, the validity
of the Young–Laplace equation has been discussed in [19–21]. Park and
Homsy firstly took thewetting effect of displacingfluid into account and
added a correction term to the Young–Laplace equation [19]. For the
rectilinear cell, Schwartz investigated the qualitative changes of the dis-
persion relations due to the wetting effect, which support to take ac-
count of this effect [20]. In the case of the radial cell, Maxworthy
performed experimental investigations which tend to agree with the

theoretical ones by considering this effect [21]. In this context, in the re-
cent theoretical study [22], weakly nonlinear analysis was carried out
based on the mode coupling equation with the wetting effect. There, it
was suggested that the model with the boundary condition including
thewetting effect reflects the nonlinear features of the viscous fingering
more accurately than the one without this effect.

On the other hand, another kind of corrected boundary condition
was individually proposed by Kim et al. [23] and Gadêlha and Miran-
da [24], which applied the normal stress balance at the interface in-
stead of the Young–Laplace equation. However, the work by Kim
et al. [23] was limited to the linear analysis, and did not give us
enough answer to the pattern formed by an unstable interface.
While the one by Gadêlha and Miranda [24] did not contain all of
the correction terms, and hence it seems to be insufficient. Therefore,
as a next step, it is quite natural to develop the nonlinear analysis
based on the normal stress balance properly. From these back-
grounds, we investigate the following points: (i) to derive the new
mode coupling equation which includes the complete form of the
normal stress balance; (ii) to compare the behaviors of the interfaces
whether the normal stress balance is considered or not (see [25] for
more detailed information). In these means, our approach can be a
complement of the previous studies about weakly nonlinear mode
coupling equation.

Our model is as depicted in Fig. 1, where the thickness of the
Hele-Shaw cell is b, and viscosities of fluids 1 and 2 are denoted
by μ1 and μ2, respectively. Hereafter, subindex i represents the
inner (i = 1) and the outer (i = 2) fluid, and moreover vi = vi(r, θ, t),
pi = pi(r, θ, t) and ∇ are the velocity vector, the pressure of fluid i, and
the differential operator in the polar coordinates (r, θ), respectively.
Here we assume that flows of the fluids in the Hele-Shaw cell obeys
Darcy's law vi = −(b2 / 12μi)∇pi. From the Darcy's law and the
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incompressibility of the fluids i.e.,∇ · vi=0, it is derived that the veloc-
ity potential of each fluids satisfies the Laplace equations∇2ϕi=0. Thus
Hele-Shaw problem consists of solving the Laplace equations under the
appropriate boundary conditions.

2. The derivation of the mode coupling equation

In this section we discuss the boundary conditions and derive the
extendedmode coupling equation. By following thework due toMiranda
and coauthors [18,24], the general solution of the Laplace equation can be

written as Fourier power seriesϕ1 ¼ ϕ1
0 þ∑n≠0ϕ1n tð Þ r=Rð Þ nj jeinθ,ϕ2 ¼

ϕ2
0þ∑n≠0ϕ2n tð Þ R=rð Þ nj jeinθ, whereϕi

0=−(Q/2π)log(r/R)+ Ci and Ci is
the constant independent of both r and θ (i = 1, 2). Similarly, we also
assume that the perturbation of the interface can be represented as
ζ(θ, t) = ∑ n = −∞

∞ ζn(t)einθ. From the condition that the area S =
πR(t)2 of fluid 1 is conserved independent of the perturbation ζ(θ, t),
there exist a constraint for ζ0(t) such that ζ0(t) = −(1/R(t)) ∑ n ≠ 0

|ζn(t)|2.
Then we consider two boundary conditions applied to the Laplace

equation. The first one is known as kinematic boundary conditions Vn =
vi ⋅ n, which can be written in the polar coordinates as follows [18]:

∂ℛ
∂t ¼ 1

r2
∂ℛ
∂θ

∂ϕi

∂θ −∂ϕi

∂r

� �
r¼ℛ

i ¼ 1;2ð Þ: ð1Þ

Here n denotes the unit normal vector pointing into the interior of
fluid 2. As the second boundary condition, we consider the balance of
normal stresses at the interface,

nT2n−nT1n ¼ σ 2=bþ Hð Þ; ð2Þ

instead of the traditional Young–Laplace equation. Here Ti = −piI +
2μiei (i = 1, 2) are the stress tensors for Newtonian fluids, with I as the
unit tensor and ei as the rate-of-strain tensor whose (j, k)-component
(ei)jk is (ei)jk = (1/2)(∂(vi)j/∂xk + ∂(vi)k/∂xj) (j, k = 1, 2) and the index
j of (⋅)j means the j-component with respect to the two dimensional
Cartesian coordinates (x1, x2), respectively [26,27]. Then the normal
stress balance can be written simply as

p1−p2 þ 2μ1n � e1 � n−2μ2n � e2 � n½ �r¼ℛ ¼ σ
2
b
þ H

� �
: ð3Þ

The terms in [·] are referred to as the viscous normal stress ([23],
hereafter VNS) and have not been considered in almost all previous
studies based on Young–Laplace equation

p1−p2 ¼ σ
2
b
þ H

� �
: ð4Þ

Note that theYoung–Laplace equation is easily derived from thenor-
mal stress balance by neglecting the VNS terms, which is satisfied in the

case of ei =0, i.e., the interface moves rigidly without any deformation.
This indicates that VNS plays an essential role to the deformation of the
interface, so that we should employ not the Young–Laplace equation
but the normal stress balance for the viscous fingering as a nonlinear
phenomenon.

Nowwe derive themode coupling equation. Substituting the gener-
al solution ϕi into the kinematic boundary condition (1), and eliminat-
ing ϕin by use of the normal stress balance (Eq. (3)), we obtain a time
evolution equation for perturbation ζ(θ, t),

∂ζn

∂t ≡ ζ̇n ¼ Λ nð Þζn þ
X
n′≠0

Γ n;n′
� �

ζn′ζn−n′ ; ð5Þ

where

Λ nð Þ ¼ Q
2πR2 A nj j−1ð Þ− α

R3 nj j n2−1
� �

þ ϵn2 Q
πR2 A nj j−A2−2

� �
þ 2ϵ

α
R3 n

2 n2−1
� �

Aþ nj jð Þ;
ð6Þ

Γ n;n′
� �

¼ 1
R

"
Q

2πR2 A nj j A n′
��� ��� 1−sgn nn′

� �� �
−1

2

	 

− A n′

��� ���−1
� �� �

− α
R3

 
nj j 1−1

2
nn′−3

2
n′2

� �
þ A nj j 1−sgn nn′

� �� �
−1

n o
n′
��� ��� n′2−1
� �!#

þ ϵ
R
− Q

πR2 An
2 n′
��� ��� 1−A2
� �

sgn nn′
� �

þ A nj j
(
−4n′2 n′ þ 1

� �

þ1
2

nj j Aþ nj j þ 4n′
� �

þ 1

)

þA nj j A n′
��� ���−1

� �(
nj j Aþ nk kð Þ þ n′

��� ����2n′2−nn′ þ 2
�)

−n′2 A n′
��� ���−A2 þ 2

� �
A nj j 1−sgn nn′
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−1

n o

þ2
α
R3 n

2 Aþ nj jð Þ 1−1
2
nn′−3

2
n′2

� �
þ n2 n′

��� ��� n′2−1
� �

1−A2
� �

sgn nn′
� �

þA nj j n′
��� ��� n′2−1
� �

nj j Aþ nj jð Þ þ n′
��� ����2n′2−nn′ þ 2

n �o

− nj jn′ n′2−1
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4n′−n
� �

þ n′2 n′2−1
� �

Aþ n′
��� ���� �

A nj j 1−sgn nn′
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−1
n o

:

ð7Þ

In the above, parameters are defined as A=(μ2− μ1)/(μ2 + μ1) and
α= b2σ/12(μ1+ μ2).Moreover ϵ= ϵ(t)= b2/12R(t)2 represents the ef-
fect of VNS and also indicates the 3-dimensional effect of the interface as
seen from its definition. This equation, which was also derived in [25],
reflects the VNS effect in the complete form, and therefore it is the ex-
tended one which proposed by Miranda and coauthors [18,24]. We
also emphasize that the analysis by Kim et al. [23] was carried out
based on the Eq. (5) for the case of Γ(n, n′) = 0. For these reasons, we
refer to Eq. (5) as the extended mode coupling equation [25].

3. Analysis of the extended mode coupling equation

3.1. Linear approximated solution

In this section we analyze the extendedmode coupling equation (5)
derived above. Following [18,24], as the first step, we neglect the cou-
pling term of the Eq. (5) and solve the linearized equation,

ζ̇n ¼ Λ nð Þζn: ð8Þ

The solution of Eq. (8) is easily obtained as

ζn tð Þ ¼ ζn 0ð Þexp
�Z t

0
Λ nð Þdt

�
: ð9Þ

This solution grows with t if Λ(n) N 0 and decays otherwise. The for-
mer corresponds to the unstable interface, and the latter means the

O

Fig. 1. Our model: HeleShaw cell and radially growing interface.
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