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We have studied the effects of interactions between particles on the dynamics in a colloidal dispersion system
using the time-dependent density functional theory.We consider a hard-sphere probe particle fixed at the origin
and hard-sphere colloidal particles suspended in a solvent that flows at a constant velocity against the probe
particle. We calculated the density fields of colloidal particles, forces acting on the probe particle, and friction
coefficients for small volume fractions of colloidal particles. The results show that hard-sphere interactions
between colloidal particles decrease the forces and friction coefficients. The effect of the interactions is more
significant for small colloidal particles than for large particles. The effect also becomes weak with increasing
velocity of the solvent.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Microrheology is the study of complex fluids (e.g. colloidal
suspensions, polymer solutions, and gels) using microsize probe
particles [1–5]. When probe particles are embedded in a complex
fluid, their motion reflects the mechanical properties of the fluid.
Therefore, the mechanical properties of complex fluids can be inves-
tigated by observing the motion of probe particles. In addition, we
can also investigate the mechanical properties by moving probe
particles at a constant velocity against a complex fluid [5]. Thus, to
estimate the mechanical properties, we should measure forces
exerted by the complex fluid on the probe particles.

The motion of probe particles is affected by interactions between
particles constituting complex fluids (e.g. colloidal particles). The
motion depends on the density distribution of the constituent particles
around the probe particles. A high density around the probe particles
can hinder the motion of the probe particles. The density distribution
is governed by the interactions between constituent particles as well
as between the probe and constituent particles. Therefore, when analyzing
the motion of probe particles, it is necessary to study the effects of
interactions between constituent particles.

However, the effects of interactions between constituent particles
on the dynamics in microrheology are not yet well understood.
Although Brady and coworkers theoretically studied the dynamics of a
probe particle in a colloidal dispersion system, they ignored interactions
between colloidal particles [6–8]. Carpen and Brady studied the effects
of the interactions through Brownian dynamics simulations [9]. However,
their study was restricted to a small variety of volume fractions of

colloidal particles and, in particular, lacked results for small volume
fractions. To study such a problem theoretically, a colloidal dispersion
system has often been employed because of its simplicity.

Time-dependent density functional theory (TDDFT) is a powerful
tool for studying the effects of interactions between particles [10–30].
This theory has been successful in describing the dynamics of atomic
and molecular liquids [10–25]. It has been employed for the system
with a velocity field [31] and various densities of liquids [23,32,33]. In
particular, using this theory, the dynamics of solvent particles has
been extensively studied in the case of solvent particles distributed
around solvated solutes [10–18]. Since TDDFT can be applied regardless
of the size of particles constituting a system, the theory can be applied to
particles constituting complex fluids [26–30].

In the present study, by performing numerical calculations based on
TDDFT, we investigate the effects of interactions between colloidal
particles on the dynamics in microrheology. We consider a spherical
probe particle pulled at a constant velocity U [6–8]. By calculating the
density distribution of colloidal particles around the probe particle, we
obtain the force F exerted by the colloidal particles on the probe particle.
The force F is calculated in two systems comprising colloidal particles
with and without hard-sphere interactions between each other. For
these systems, when the volume fraction of colloidal particles ϕ is
small, we calculate the dependences of F on ϕ and the velocity U.

2. Model and methods

We consider a probe particle fixed at the origin and colloidal particles
suspended in a solvent that flows at a constant velocity U against the
probe particle. The system is equivalent to that of a probe particle pulled
at a constant velocity -U in a stationary colloidal suspension. We assume
that the interactions between the probe and colloidal particles can be
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modeled as those of hard spheres. For the interactions between colloidal
particles,we consider two cases: hard-sphere interactions andno interac-
tions. In addition, we ignore the hydrodynamic interactions mediated by
the solvent.

In this system, to calculate the time development of the density field
of colloidal particles ρ(r,t), we apply TDDFT [10] using the basic
equation

∂ρ r; tð Þ
∂t ¼ D∇2ρ r; tð Þ−U �∇ρ r; tð Þ

−D∇ � ρ r; tð Þ∇∫c2 r−r0
� �

Δρ r0; t
� �

dr0
h i

;
ð1Þ

where

Δρ r; tð Þ≡ ρ r; tð Þ−ρ0: ð2Þ

Here, D is the diffusion coefficient and c2(r) is the direct correlation
function between two colloidal particles. The homogeneous density ρ0
is defined at an infinite distance from the probe particle. Eq. (1) is
valid even if the size of a colloidal particle is comparable to that of the
probe particle [10]. To calculate the force F acting on the probe particle,
we solve Eq. (1) and obtain a steady-state density field ρ(r,t→∞).

For numerical calculation of Eq. (1), we approximate this equation
by

∂ρ r; tð Þ
∂t ¼ D∇2ρ r; tð Þ−U �∇ρ r; tð Þ

−D∇ � ρ r; tð Þ∇∫c2 r−r0
� �

Δρid r0;∞
� �

dr0
h i

;
ð3Þ

where

Δρid r;∞ð Þ ≡ ρid r;∞ð Þ−ρ0: ð4Þ

Here, ρid(r, t) is the density field in the case that colloidal particles do
not interact with each other but have hard-sphere interactions with
the probe particle. The steady-state density field ρid(r,∞) can be obtain-
ed by solving the following equation [6–8]:

∂ρid r; tð Þ
∂t ¼ D∇2ρid r; tð Þ−U �∇ρid r; tð Þ: ð5Þ

The present approximation is valid when the volume fraction of col-
loidal particles ϕ is small. To show this, we divide ρ(r, t) into two parts:

ρ r; tð Þ ¼ ρid r; tð Þ þ ρex r; tð Þ; ð6Þ

wherewe assume that ρid(r, t) includes the effects of the first order ofϕ.
To obtain Eq. (3), we ignore ρex(r′, t) in Δρ(r′, t) in Eq. (1). The ignored
excess part ρex(r′, t) includes the effects of the second order of ϕ and
above. Thus, we ignore terms in the second order of ϕ and above in
Δρ(r′, t), or in the third order of ϕ and above in ρ(r, t)Δρ(r′, t) on the
right-hand side of Eq. (1). Therefore, this approximation ensures
accuracy to the second order of ϕ.

Using the steady-state density field ρ(r,∞) obtained from Eq. (3), we
calculate the force F exerted by colloidal particles on the probe particle.
When the interactions between the probe and colloidal particles are
modeled as those of hard spheres, the force is obtained by [6]

F ¼ −kBT
Z

S
ρ r;∞ð ÞndS: ð7Þ

Here, S is the surface of the depletion zone around the probeparticle and
n is a normal vector of this surface. The depletion zone is the region
where colloidal particles cannot enter because of its overlap with the
probe particle. Eq. (7) shows that the force F is generated by the inho-
mogeneity of the density field around the probe particle.

To solve Eqs. (3) and (5), we impose two boundary conditions. One
is that the inflow and outflow of colloidal particles are zero across the
surface of the depletion zone S. This condition is described by

n � j r; tð Þjr¼rS ¼ 0; ð8Þ

n � jid r; tð Þjr¼rS ¼ 0; ð9Þ

where j(r, t) is the flow of colloidal particles for Eq. (3), jid(r, t) is the
flow for Eq. (5), and rS is the position of the surface S. The definitions
of the flow j(r, t) and jid(r, t) are given by

j r; tð Þ≡D∇ρ r; tð Þ−Uρ r; tð Þ
−Dρ r; tð Þ∇∫c2 r−r0

� �
Δρid r0;∞

� �
dr0;

ð10Þ

jid r; tð Þ≡D∇ρid r; tð Þ−Uρid r; tð Þ: ð11Þ

The other condition is that ρ(r, t) and ρid(r, t) are equal to ρ0 at a posi-
tion sufficiently far from the probe particle. In numerical calculation,
this position corresponds to the edge of the calculation region.

We solve Eqs. (3) and (5) through the finite difference method. The
spatial difference is (a+ b)/100, where a and b are the radii of the probe
and colloidal particles, respectively. We calculate the force F by using
the solution of Eq. (3) for various values of the velocity U and the
volume fraction ϕ, the size ratio between the probe and colloidal
particles b/(a+ b). Here, the volume fractionϕ alters the direct correlation
function c2(r) which is obtained by the Percus–Yevick approximation
[34]. The size ratio b/(a + b) affects the boundary condition at the
surface of the depletion zone S. Thus, the volume fraction and size ratio
are incorporated to the calculation via the direct correlation function
and boundary conditions, respectively.

3. Results

To study the effect of interactions between colloidal particles, we
calculate the dependence of the force F on the volume fraction of colloi-
dal particles ϕ. Then, the force is scaled by

eF ≡ b3

aþ bð Þ2kBT
jFj; ð12Þ

and the volume fraction is defined by

ϕ≡ 4
3
πb3ρ0: ð13Þ

The dependence of eF on ϕ is plotted for eU ¼ 0:1 (Fig. 1) and eU ¼ 1:0
(Fig. 2), where eU is defined by

eU ≡ aþ b
D

jUj: ð14Þ

In these figures, the symbols and solid line represent the values of eF ob-
tained by integratingρ(r,∞) and ρid(r,∞), respectively. The four types of
symbols represent the results obtained for the different sizes of colloidal
particles.

Fig. 1 shows that the force exerted by colloidal particles on the probe
particle is decreased by the effect of the interactions between the colloidal
particles. Although the solid line and symbols are in agreement at small
values of ϕ, the symbols at large values of ϕ lie below the solid line. The
deviations of the symbols from the solid line is caused by the effect of
the hard-sphere interactions between the colloidal particles. These
deviations increase as the size of the colloidal particles decreases. This
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