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In the present work, using the principle of isomorphism and complete scaling method, a new scaled crossover
parametric equation of state and a new representation for the refractive index of binary systems has been intro-
duced. We have introduced a stepwise algorithm for calculating the mixing parameters defining scaling fields in
terms of physical fields. Comparing the experimental data for five thermophysical properties and for eight binary
liquid systems, it has been observed that this new approach is able to predict all thermophysical properties quite
well.
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1. Introduction

Although mean-field theory is able to predict the thermophysical
properties of fluids far from the critical point, this theory completely
fails in the vicinity of the critical point and high deviations appear prob-
ably due to the long-range fluctuations in the order parameter. One pos-
sible approach to study the behavior of fluids and fluidmixtures close to
the critical point is the renormalization group theory (RGT) [1]. RGT
predicts that the free energy is a homogenous function of physical fields
near the fixed points this result leads to the scaling law.

The scaling law is one of themost powerful tools to study the critical
behavior of fluids and fluidmixtures in the vicinity of critical points and
predicts that near the critical point, the thermophysical properties be-
have as [2,3]:

Δncxc ¼ B̂n
0 ΔT̂
��� ���β ; ð1Þ

Δρ̂cxc ¼ B̂0 ΔT̂
��� ���β ; ð2Þ

where n, ρ̂ ¼ ρ
ρc
,ΔT̂ ¼ T−Tc

Tc
andβ are the refractive index, reduced density,

reduced difference temperature and universal critical exponent, respec-
tively. Here, c and cxc stand for critical and coexistence, respectively. B̂n

0
and B̂0 are two system dependent parameters.

Because of two important deficiencies of the lattice gas model,
namely Yang–Yang anomaly and asymmetric nature of the coexistence
curve, it was realized that this model is not able to give the correct pre-
diction of the thermophysical properties of fluids in non-classical re-
gions [4]. The lattice gas model does not cause Yang–Yang anomaly
and predicts a perfect symmetry for the coexistence curves which is
not correct for all fluids. One of the best ways for this problemwas pro-
posed by Fisher et al. [5], in which they suggested that the scaling fields
should be a combination of all physical fields of the system. Using this
assumption, called complete scaling, Kim et al. [6] showed that all phys-
ical behaviors of the system in the vicinity of critical point can be
reproduced.

By using the principle of isomorphism implying that physical prop-
erties in coexisting phases can asymptotically exhibit universal power
laws, thus we have added the difference of chemical potentials of the
components to the scaling fields to extend the complete scaling to the
binary systems [7,8].

Wang et al. [7] showed that the asymmetric nature of liquid–liquid
coexistencewas affected by the correlation between both concentration
and entropy and concentration and density fluctuations.

Until now, no one has formulated a closed form representation for
the scaling fields due to the mathematical problems appearing near
the critical point. As a result, some parametric models have been pro-
posed which can explain the behavior of the system close to the critical
point where non-classical behaviors are enhanced [9].

Although this approach is very powerful to study the systems in the
vicinity of the critical point, these kinds of equations of state have a very
narrow range because the region in which fluids and fluid mixtures
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have long-range fluctuations is very small and exists close to the critical
point. To extend the range of applicability of these equations of state,
the crossover theory developed by the RGT of the critical phenomena
is used. To this end, the scaling fields have been rescaled with respect
to the fact that the crossover from asymptotic Ising-like critical behavior
to classical mean-field behavior occurs by a crossover function [9].

Recently, Agayan et al. [9] have proposed a new crossover paramet-
ric model (CPM) which incorporates a crossover from non-classical to
mean-field behavior. It was shown that CPM predicted thermophysical
properties of 3He accurately.

In this work, we have presented a new representation for refrac-
tive index using CPM and the resulting equation of state has been
extended to binary systems in the complete scaling framework. In-
vestigating the efficiency of the equation of state, we have adopted
CPM for polar–nonpolar mixtures such as Benzonitrile + n-CnH2n + 2

and Nitrobenzene + n-CnH2n + 2 mixtures. Also, incorporating the CPM
and complete scaling allows us to study the behavior of the fluidmixtures
exhibiting asymmetric nature in their coexistence curves. It is worth not-
ing that the above mentioned systems were selected because they have
similar spatial structure solutionswhich lead to the same trends in the ex-
cess thermodynamic properties such as excess volume, excess isobaric
heat capacity, and excess enthalpy, allwithupper critical solution temper-
atures due to similar intermolecular interactions. These choices allow us
to find out any trend in the system dependent coefficients.

This paper is organized as follows: in Section 2, we will review the
scaling law, the complete scaling and the theory extended to the critical
refractive index. In Section 3, the crossover parametric model will be
discussed. Finally in Section 4, the CPMwill be applied to the fluid mix-
tures and some physical systems will be considered showing the accu-
racy of the model.

2. Scaling law

It iswell known that in the regions very close to the critical point, the
critical behavior of fluids that belong to the universal class of Ising-like
systems is characterized by two independent (h1 and h2) and one de-
pendent (h3) scaling fields. According to RGT, the relation between h1,
h2 and h3 may be written as [10]:

h3≈ h2j j2−α f�
h1

h2
2−α−β

 !
; ð3Þ

where α and β are universal exponents and superscripts + and− refer
to h2 N 0 and h2 b 0, respectively. Using Eq. (3), one can calculate the
scaling densities (φ1 andφ2) and susceptibilities (χ1 andχ2) [10] as fol-
lows:

φ1 ¼ ∂h3
∂h1

� �
h2

≈� B0 h2j jβ ; h2≤0; ð4Þ

φ2 ¼ ∂h3
∂h2

� �
h1

¼ − A−
0

1−α
h2 h2j j−α−Bcrh2

� �
; h2b0 ð5Þ

χ1 ¼ ∂φ1

∂h1

� �
h2

≈Γ�0 h2j j−γ
; ð6Þ

χ2 ¼ ∂φ2

∂h2

� �
h1

≈A−
0 h2j j−α−Bcr: ð7Þ

Thus, the two-phase isomorphic heat capacity can be written as:

ĈP;x x ¼ xcð Þ ¼ ∂φ2

∂h2

� �
h1

≈Â
−
0 ΔT̂
��� ���−α

−B̂cr; ð8Þ

where ĈP;x ¼ CP;x=R, and the heat capacity amplitudes are B̂cr ¼ Bcr=R,
Â
−
0 ¼ A−

0 =αR.
In the lattice gas model the critical vapor–liquid transition can be

identified by choosing the following fields [10]:

h1¼Δμ̂; h2 ¼ ΔT̂; h3 ¼ ΔP̂; ð9Þ

where T̂ ¼ T
Tc
, μ̂ ¼ μ

RTc
and P̂ ¼ P

RρcTc
.

Although the Lattice gasmodel can predicts the non-classical behavior
of the system close to the critical point, because of the perfect symmetry
of its coexistence curve it is deeply understood that this model cannot be
applied for real systems, as most of the fluids and fluid mixtures do not
have perfect symmetry in their own coexistence curve [11,12].

Fisher et al. [5] proposed that the scaling fields should be a combina-
tion of all physical fields. Later, Wang et al. [4] using some assumptions
have simplified the equations previously obtained by Fisher and co-
workers and have shown that for scaling fields one can write:

h1 ¼ a1Δμ̂ þ a2ΔT̂ þ a3ΔP̂; h2 ¼ b1ΔT̂ þ b2Δμ̂ þ b3ΔP̂;

h3 ¼ c1ΔP̂ þ c2Δμ̂ þ c3ΔT̂;
ð10Þ

where coefficients ai,bi and ci are systemdependent parameters. As a con-
sequence, thermophysical properties of the system can be obtained using
Eqs. (4)–(5) and (10). For instance, density can be evaluated as [7]:

ρ̂ ¼ 1þ φ1 þ φ2

1−a3φ1−b3φ2
: ð11Þ

The complete scaling mentioned above cannot be used for a binary
system. By using the principle of isomorphism, complete scaling can
be extended to mixtures and to this end, the scaling fields are written
as follows [7,13,14]:

h1 ¼ a1Δμ̂1 þ a2ΔT̂ þ a3ΔP̂ þ a4Δμ̂21 þ a5ΔÊ
0
; ð12Þ

h2 ¼ b1ΔT̂ þ b2Δμ̂1 þ b3ΔP̂ þ b4Δμ̂21 þ b5ΔÊ
0
; ð13Þ

h3 ¼ c1ΔP̂ þ c2Δμ̂1 þ c3ΔT̂ þ c4Δμ̂21 þ c5ΔÊ
0
; ð14Þ

where Δμ̂1 is the chemical potential of component 1, ΔÊ0 ≡ E0=ρckBTc is
the reduced critical deviation of electric fields, recalling that E′= ε0E2/2
and Δμ̂21 is the chemical potential difference of components 1 and 2.

Themolecular density, ρ̂, mole fraction, x2, entropy per unit volume,
ρ̂Ŝ, molarity, ρ̂x2, (number of solute molecules per unit volume) and di-
electric constant, εr, are defined as [13,14]:

ρ̂ ¼ ∂P̂
∂μ̂1

 !
T̂;μ̂21 ;Ê

0
; ρ̂Ŝ ¼ ∂P̂

∂T̂

 !
μ̂1 ;μ̂21 ;Ê

0
; ρ̂x2 ¼ ∂P̂

∂μ̂21

 !
T̂;μ̂1 ;Ê

0
;

εr ¼
∂P̂
∂Ê0

 !
T̂;μ̂1 ;μ̂21

:

ð15Þ

Inserting Eq. (15) into Eqs. (12)–(14), thermodynamic relations of
binary fluids may be written as [13,14]:

x2 ¼ −c4 þ a4φ1 þ b4φ2

−c2 þ a1φ1 þ b2φ2
¼ x2;c þ 1−x2;ca1

� �
φ1 þ b4−x2;cb2

� �
φ2

þ x2;ca1
2−a1

� �
φ1

2 þ…; ð16Þ
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