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In this communication, a group contribution method (GC) for the representation/prediction of liquid thermal
conductivity of pure chemical compounds,most of which are organic in nature, is presented. Nearly 19,000 liquid
thermal conductivity data at different temperatures compiled for 1635 chemical compounds were extracted
from the DIPPR 801 database and used to develop the proposedmodel, as well as to validate and optimize its pa-
rameters and evaluate its predictive capability. The parameters of themodel comprise the occurrences/existence
of 49 chemical substructures plus temperature. Nearly 80% of the data set (15,450 data points) is used to develop
the model parameters, 10% of the data set (1931 data points) was employed to validate and optimize the model
parameters, and the remaining data (1931 data points)were implemented to assess its predictive capability. The
average absolute relative deviation of the model results with respect to the DIPPR 801 data is less than 7.1%. In
terms of its simplicity and wide range of applicability, the model shows reasonable accuracy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In most chemical processes, there is a need to perform an energy
balance on units, in order to determine how much heat is either given
off or absorbed in various equipment such as furnaces, evaporators, dis-
tillation units, dryers, reaction vessels, etc. [1]. Heat transfer can occur
by three mechanisms, one of which is thermal conduction. In thermal
conduction, heat transfer occurs due to a temperature gradient [1]. It
is attributed to vibrational movements of molecules and expressed as
Fourier's Law [2].

Liquid thermal conductivity is an important transport property
which is needed for calculation of the thermal conduction component
of heat transfer. Accurate measurements of thermal conductivity are
not straightforward and special care is needed in experimental mea-
surements because of the possible presence of convective currents and
heat losses. As a result, the uncertainty in the reported measurements
of existing experimental data is relatively large compared to other
thermophysical properties reported [3–7].

The aspects of kinetic theories of thermal conductivity for mono-
atomic liquids were initially presented in 1950 [8]. Since then, many

researchers have attempted to developmodels for the estimation of liq-
uid thermal conductivities of pure compounds.Most of them are empir-
ical in nature and have limited applicability. According to Sastri and Rao
[9,10], inmost of the existingmethods, thermal conductivity is correlat-
ed at a reference temperature such as the normal boiling point (for
instance in the models proposed by Sato-Riedel [7,11], and Sastri and
Rao [9,10]) or at 293.15 K (for instance in the models proposed by
Missenard [12] and API Technical Data Book [13]). Thus, the tempera-
ture dependency of the model is investigated.

A detailed review of the existing models for the estimation of liquid
thermal conductivity of pure compounds has been presented by Poling
et al. [14]. In this review [14], it has been mentioned that although the
methods presented by Latini et al. and Baroncini et al. [15–21] and Sastri
et al. [22] are generally better than the others below the normal boiling
temperature, the deviation of the models vary widely, typically less
than 15%. Additionally, although the Latini et al. and Baroncini et al.
[15–21]methods have been successfully applied for refrigerants up to re-
duced temperatures equal 0.9, it has been mentioned that there are few
experimental liquid thermal conductivity data for reduced temperatures
greater than 0.65. Therefore, it can be concluded that themodels current-
ly available may not accurately predict the liquid thermal conductivity
for reduced temperatures greater than 0.65. Moreover, the model pro-
posed by Latini et al. and Baroncini et al. [15–21] is presented for several
particular chemical families of compounds, viz. saturated hydrocarbons,
olefins, cycloparafins, aromatics, alcohols, organic acids, ketones, esters,
and refrigerants. These chemical families do not cover a significant
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number of widely used chemical families such as amines, silanes/
siloxanes, inorganic compounds, sulfides/thiophenes, mercaptanes,
epoxides, peroxides, nitriles, elements, and aldehydes. This issue signifi-
cantly affects its applicability domain when using the model. As a result,
the model is not a general model.

Furthermore, themodel proposed by Sastri et al. [22] is based on 748
data points for 208 compounds below the normal boiling point, and 186
data points for just 23 pure compounds above the normal boiling point.
Therefore, it affirms that the model cannot be considered as a general
model. Moreover, Poling et al. [14] mentioned that none of the existing
methods can predict the large changes of thermal conductivity near the
critical point.

As a result, there is a requirement to utilize the extensive databases
of experimental liquid thermal conductivity data such as that available
in DIPPR 801 [23] to develop more accurate and more comprehensive
models. In this study, a group contribution method (GC) is presented
for the representation/prediction of the liquid thermal conductivity of
more than 1600 pure compounds (mostly non-electrolyte organic mol-
ecules) at different temperatures and atmospheric pressure for temper-
atures below the normal boiling point and at saturation pressure for
temperatures above the normal boiling point. It should be noted that
the normal boiling point is the boiling point atwhich the vapor pressure
equals 1 atm.

2. The database

The DIPPR 801 database [23] was used to provide the liquid thermal
conductivity data for this study. Nearly 19,000 liquid thermal conductiv-
ity data for 1635 pure compounds which are mostly organic molecules
were extracted from the DIPPR 801 database [23] and were used to de-
velop and then to validate the model. It is worth to mention that DIPPR
801 data which have been evaluated and labeled as “Accepted” data in
the database were used in this study to develop and validate the
model. It should be stated that the data is related to liquid thermal con-
ductivity of pure chemical compounds at a pressure of 1 atm for tem-
peratures below normal boiling point (normal boiling point is the
boiling point at which the vapor pressure equals 1 atm) and at satura-
tion pressure for temperatures above the normal boiling point.

In order to obtain a predictive model, it is required to split the data
set into three sub-data sets; first one for developing the model (called
the “training set”), the second one for assessing the internal validity of
the model (called the “validation set”), and the last one for evaluating
the predictive capability of the obtained model (called the “test set”).
This can be done randomly; however, this may bring about some inap-
propriate allocation of data to each sub-data set. In order to avoid this
issue, the K-means clustering technique can be used [24; 25]. Thismethod
partitions a data set into n sub-data sets inwhich each data point belongs
to the subset with the closestmean. This procedure resolves the issue of
inappropriate allocation of data sets. Another important point is the
quota of each sub-data set from the main data set. It has been shown
that if the training set is too small, the model produced does not have
adequate predictive power. Moreover, if the data set is too large, the
model may produce significantly better results for training set rather
than for the validation and test sets [26]. In order to prevent these is-
sues, nearly 80% of the data set was allocated to the training set
(15,450 data points) and the remaining data was divided into two
equal sub-data sets and were allocated to the validation and test sets,
respectively (1931 data points each).

3. Development of a new group contribution model

In order to develop a group contribution model, the chemical struc-
tures of all 1635 pure compounds were analyzed with great attention
paid to comparing the chemical substructures to determine themost ef-
ficient contributions to the liquid thermal conductivity. Initially, nearly

650 chemical substructures that have already been used by the authors
in their previous studies plus temperature were considered.

Consequently, the occurrences of these 650 chemical substructures in
each of the 1635 compounds were counted. The results were imported
into a table. Then the pair correlation between each pair of these 650
chemical substructures was calculated to determine those chemical sub-
structures thatwere linearly related to each other. In the next step, one of
each pair of the chemical substructures that have a squared correlation
coefficient higher than 0.95 was eliminated and the other one kept for
the next step. The collection of chemical substructures diminished to
321 chemical substructures using the pair correlation technique.

The final step in developing the model is the selection of an optimal
subset of chemical substructures which have the highest contribution
for the liquid thermal conductivity of pure compounds. To do this a sub-
set variable selection technique should be implemented to select the
most statistically effective chemical substructures for the liquid thermal
conductivity. This step should be done in order to avoid entering irrele-
vant chemical substructures that have no significant effect on liquid
thermal conductivity. For this purpose, the sequential search algorithm
in the MATLAB software platform was employed. The major target of a
sequential search is to find an optimal subset of chemical substructures
for a specified model size and develop a linear correlation using them.
The basic idea of the method is to replace each chemical substructure
one at a time with all the remaining ones and see whether an improved
model is obtained. The major steps of the algorithm are as follows:

step 1 Introduce all the molecular descriptors
step 2 Consider all the one-variable linear correlations between the

thermal conductivities of liquids and the molecular descriptors
step 3 Thefirst optimal descriptor is the onewhichpredicts the thermal

conductivities of liquids with lowest possible AARD%

AARD% ¼ 100
N

XN

i

krep=pred−kexp
���

���
kexp

ð1Þ

step 4 Define the number of molecular descriptor(s) in the first step
i = 1

step 5 Consider all the linear correlations between the thermal conduc-
tivities of liquids and i + 1molecular descriptors including the i
optimal descriptor(s) selected in the previous step(s)
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Fig. 1. The improvement of model in terms of R2 and AARD% as function of number of
chemical substructures selected by the program.
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