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Azeotropes, which are solutions that contain two or more chemicals, are very important in industry.
Experimental techniques as well as theoretical approaches such as ab initio have been developed for estimating
mixture properties and phase equilibrium data. Both approaches are accurate and effective, but are costly
and time-consuming. The quantitative structure–property relationship (QSPR) method, which is efficient and
extremely fast, could be a viable alternative approach. In this work, we developed QSPR models for prediction
of boiling points (Tb) of binary azeotropes. The Tb values of azeotropic mixtures were investigated by means of
multiple linear regressions (MLRs). Two different data matrixes were calculated for characterizing azeotropic
mixtures based upon the centroid approximation and the weighted-contribution-factor approximation. The
ant colony optimization algorithm (ACO) was employed to select relevant descriptors. For both approximations,
significant QSPR models were obtained by using the ACO–MLR algorithm. The descriptors that appeared
in the best MLR models are related to those properties, including mass, ability to form H-binding, numbers
of heteroatom, solvation entropy, and solvation energy, that control the boiling point.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An azeotrope is a mixture of two or more chemicals in solution that
cannot be separated by basic distillation processes because the ratio of
the chemicals in the vapor phase is the same as that in the liquid
phase. In industry, azeotropes are very important due to the benefits
of azeotropic behavior, perhaps the most important is the unexpected
ability to mix flammable and nonflammable ingredients to produce
a stable nonflammable mixture. The chemicals of an azeotrope can
never be separated in a hot environment and thus dangerous flammable
vapors cannot exist. This is applicable in the production of nonflammable
solvents that are safer and more reliable to use especially in industrial
facilities. In addition, azeotropes are useful across a broad range
of applications and recovered by simple distillation [1]. Moreover
azeotropic formation is very important in distillation processes [2].
Formation of an azeotrope in an industrial process alters product
distribution and restricts the separation amount of a multicomponent
mixture that can be achieved by distillation.

The thermodynamic behavior of phase equilibria and physical
properties of mixtures are essential for design and optimization of
numerous chemical processes. Thermodynamic models used for phase
equilibria calculations can be broadly classified as equation-of-state
(EOS) models, which are capable of handling the fluid behaviors and

excess Gibbs energy (GE) models, which are capable of handling highly
non-ideal mixtures. Equations of state either using van der Waals
equation or some of its modifications are used to predict properties
of mixtures [3–12]. The more accurate equations of state, however,
commonly make use of a number of compound-specific parameters
that have to be either measured (critical parameters, etc.) or estimated
using fitting constants. Moreover, some of the fitting parameters used
for equations of state might be relevant only for homologous classes
of compounds (for instance, hydrocarbons). In general, current EOS
and GE model generalizations are not uniformly accurate and there
is a need for reliable thermodynamic models capable of giving a priori
predictions of the phase behavior of diverse systems in the absence of
experimental data [13].

Activity coefficient models including non-random two-liquid (NRTL)
and universal quasi-chemical (UNIQUAC)models arewidely used in the
chemical and petrochemical industry today [14–19]. These are found to
be especially useful for highly non-ideal vapor–liquid equilibrium (VLE)
systems. However, the models fail to provide reliable generalizations
for systems with limited or no data. Further, the model parameters
tend to be highly correlated.

Applications of ab initio approaches to predict VLE behaviors
have been reported in the literature. For example, Lee et al. showed
that quantum mechanical calculations can be used to predict vapor–
liquid equilibria of mixtures away from the critical point of any
constituent component [20]. Athès et al. demonstrated the ability
of the COSMO-SAC (conductor-like screening model-segment activity
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coefficient) approach to model vapor–liquid equilibria of water–
ethanol solutions containing 13 aroma compounds [21]. The conductor
like screening model for real solvents (COSMOS-RS) [22–24] provides
reliable estimate of vapor–liquid and liquid–liquid equilibria based
on quantum chemical calculations for the chemical species involved.
It is a relatively new approach, which utilizes unimolecular quantum
chemical calculations of the individual species and does not consider
the mixture itself. The COSMOS-RS approach uses eight adjustable
parameters and one additional parameter for each element. The
theory of COSMOS-RS resolves the issue of isomers and gives accurate
representations of LLE. However, it sometimes fails to describe the VLE
of even simple organic systems [23,24]. Besides, considerable work has
been done on developing models utilizing direct molecular dynamics/
Monte Carlo simulation techniques [25,26]. However, these approaches
are highly time consuming, require enormous computational burden,
involve several approximations, and are yet to be applied to a wide
range of systems.

Quantitative structure–property relationship (QSPR) modeling has
the potential to provide reliable property estimates based solely on
chemical structure information. Theoretical assessment of QSPRmodels
could significantly reduce the costs of selection of proper agents for
industrial process. Various studies for the correlation of pure-fluid
properties using QSPR models exist in literature [27–30]. In many
cases, QSPR approach has been used to predict properties of individual
compounds. Although QSPRmethodology could, in principle, be applied
to estimate some desired properties of mixtures, very little work has
been done on QSPR models for mixtures [31–33]. The main difficulty
in the QSPR study ofmixtures is the calculation of numerical descriptors
to characterize a mixture. Two simple approaches were introduced to
characterize a mixture [33]: (1) descriptors of a mixture are calculated
as averages of the corresponding molecular descriptors for each com-
ponent in the mixture (centroid approximation) and (2) scaled
descriptors using weighting factors proportional to the molar fraction
of each component in the mixtures were used as descriptors of a
mixture (weighted-contribution-factor approximation). The latter is
of limited practical interest because experimental measures of the
mixture's composition at the azeotropic point are needed. Katritzky
et al. used both approaches to predict normal boiling point of binary
mixtures [33]. The predictive power of linear models was rather poor:
the standard deviation of about 23 K has been obtained at the fitting
stage and has not even been reported for the external test set. Recently,
Solov'ev et al. described QSPR modeling for both normal boiling point
and the composition of binary azeotropes using ensemble multiple

linear regression (eMLR) and sub-structural molecular fragment
(SMF) descriptors [34]. Descriptors for a mixture were generated
by concatenation of fragment descriptors of its individual molecular
components. Each developed MLR model contained, on average,
36 SMF descriptors for modeling of Tb. Considering the number
of mixtures in the training set which was 176, indicates that the
ratio of the number of mixtures in the training set to the number of
descriptors in the model (Topliss ratio [35]) is low, thus individual
models may be unstable. The final statistical features of their approach
were good because the ensemble MLR models (contained at least 82
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Fig. 1. High-level view of the ACS algorithm for descriptor selection.

Procedure of the memorized ACS algorithm

Set parameters

Create pheromone vector with unity entries for all descriptors

Define a matrix (M) with m rows as external memory

i 1;

while (i L') do

j 1;

while (j m) do

Take pheromone trails 

Run the ACS algorithm with predefined pheromone trails

Take the resulted the best-so-far ant

M(j,:) the best-so-far ant

End-while

Updating pheromone vector by all ants in M 

Do pheromone evaporation

end-while

end-procedure

Fig. 2. High-level view of the Memorized_ACS algorithm for descriptor selection.
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