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Systemswith very long-range interactions (that decay at large distances likeU(r)∼r− lwith l≤dwhere d is the
space dimensionality) are difficult to study by conventional statistical mechanics. Examples of these systems
are gravitational and charged (non-electroneutral). In this work we propose two alternativemethodologies to
avoid these difficulties and capture some of the properties of the original potential. The first one consists of
expressing the original potential in terms of a finite sum of hard-core Yukawa potentials. In the second one,
the potential is rewritten as a damped potential, using a damping function with a parameter that controls
the range of the interaction. These new potentials with finite ranges, which mimic the original one, can now
be treated by conventional statistical mechanics methods.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Description of systems interacting via the so-called long-range in-
teractions (LRI) is an important statistical mechanics problem. These
systems are found from very small to very large scales, for instance,
in astrophysics [1–3], plasma physics [4,5], hidrodynamics [6], atomic
physics [7] and, nuclear physics [8].

In order to use a precise definition of LRI between a pair of parti-
cles, that are a distance r apart, we consider the following: when
the interaction potential between particles decays at long distances
like 1/rl in a space of d dimensions, the interaction can be considered
to be long-range if l≤d.

This definition is a consequence of considering the energy e of a
given particle located at the center of a sphere of radius R with a ho-
mogeneous particle distribution in d-dimensions. In order to exclude
the divergence that appears at very short distances, the energy of the
neighboring particles located inside a sphere of radius δ is neglected,
e is given by,

e ¼ ∫R
δ
ρB
rl

ddr ¼ ρBΩd∫
R
δ r

d−1ð Þ−ldr

¼ ρBΩd

d−a
Rd−l−δd−l
h i

; if l≠d;
ð1Þ

where ρ is the generic particle density, B is a coupling constant which
guarantees the correct energy dimensions, and Ωd is the angular
volume in the d-dimensional space. When R is increased, e remains
finite only when l>d; such cases are the usual short-range interac-
tions. The opposite corresponds to l≤d, where energy diverges for

an increasing volume; these are long-range interactions. Examples of
different long-range potentials are shown in Fig. 1. Notice that this par-
ticular definition could be different in the context of fluids theory.

In statistical mechanics, most of the effort to obtain the equilib-
rium and non-equilibrium thermodynamic properties, has been
concentrated on systems with short-range interactions. One of the
main features of LRI systems is that their total energy, under the
pairwise additive approximation, is non-extensive, and as a conse-
quence, is also non-additive [9–14]. Therefore, the connection between
Boltzmann–Gibbs (BG) statistical mechanics and classical thermody-
namics is not straightforward, since the latter assumes that energy is
an additive quantity [15]. To our knowledge, there is not a thermody-
namic formalism (independent of a statistical mechanics approach)
that allows this connection; however, it is possible to start from a
non-extensive statistical mechanics and to obtain a non-extensive
thermodynamic formalism.

Perhaps a non-extensive version of statistical mechanics could be
a more natural theoretical frame to study LRI. A few proposals for BG
statistical mechanics generalizations have been given [9,16,17], how-
ever none of them are unanimously accepted. Besides, the application
of these generalizations to long-range potentials has been scarce.
Another approach is to make adjustments to the BG formalism to
study these systems [2,10,18].

In order to avoid the difficulties to treat LRI mentioned above,
in this work we present a first naive approach, but general, in the
sense that it can be applied to a great variety of long-range potentials
in the frame of BG statistical mechanics. This methodology consists of
rewriting a long-range potential as a short-range one, the latter being
similar to the long-range potential in its graphical representation.
We expect that this short-range potential recovers some features of
the original one, however we realize that this path leads to a classical
thermodynamics frame and we do not know if real systems with LRI
are well represented by this thermodynamics.

Journal of Molecular Liquids 185 (2013) 20–25

⁎ Corresponding author. Tel.: +52 477 7885100x8476; fax: +52 477 7885100x8410.
E-mail addresses: lescamilla@fisica.ugto.mx (L. Escamilla), jtorres@fisica.ugto.mx

(J. Torres-Arenas), alb@fisica.ugto.mx (A.L. Benavides).

0167-7322/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.molliq.2012.11.017

Contents lists available at SciVerse ScienceDirect

Journal of Molecular Liquids

j ourna l homepage: www.e lsev ie r .com/ locate /mol l iq

http://dx.doi.org/10.1016/j.molliq.2012.11.017
mailto:lescamilla@fisica.ugto.mx
mailto:jtorres@fisica.ugto.mx
mailto:alb@fisica.ugto.mx
http://dx.doi.org/10.1016/j.molliq.2012.11.017
http://www.sciencedirect.com/science/journal/01677322
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molliq.2012.11.017&domain=pdf


More specifically our approach consists of expressing a given long-
range potential as a) a finite sum of Yukawa potentials; b) a product of
the potential with a damping function which depends on a parameter,
that under a certain limit, the original potential is recovered.

We have selected the Discrete Perturbation Theory [19] (DPT) and
the First-order Mean Spherical Approximation [20] (FMSA) to study
these potentials. These theories have been successfully applied in
the context of fluids and more recently in the soft matter field, and
can be applied to a great variety of potentials.

As an illustrative example, we have chosen the gravitational
potential due to the interaction between two identical spherical
rotating bodies (ETS potential), obtained by Escamilla et al. [21]. More
interesting models in the context of molecular liquids, could be, for
instance, the Coulomb interactions.

This work is organized as follows. In Section 2, we give a brief
description of the ETS potential and of the hard-core multi-Yukawa
(HCMY) and damped potential approaches. In Section 3 we present
internal energies, pressures, and vapor–liquid phase diagrams for the
approximated potential. Finally, in Section 4 we give the main conclu-
sions of this work.

2. Theory

2.1. The ETS potential

In the context of general relativity, within the weak-field limit
methodology, an angular averaged potential due to the interaction
between two identical spherical rotating bodies was proposed
[21]. This interaction potential for hard-core spheres is given by
U∗(x)≡U(x)/|�min|, where:

U� xð Þ ¼
∞ if x < 1

− 1
arctan α�ð Þ arctan α�

=x
� �

if x≥ 1;

8<
: ð2Þ

with α∗≡ J/Mcσ, M is the mass, J is the angular momentum, c is the
speed of light in vacuum, σ is the diameter of particles, x=r/σ and
�min is the potential evaluated at x=1. This potential is purely attractive,
nondivergent at short distances (for x→0, 1/α∗arctan(α∗/x)→π/2), and
keeps its long-range nature satisfying the condition given by Eq. (1).
Specific angular momentum α∗ is a parameter which modulates the
intensity of the interaction. The long-range behavior is the same for
any finite value of α∗. For instance, in the limit of α∗→0 the ETS poten-
tial goes to conventional −1/x Newtonian gravitational interaction.
In Fig. 2, the ETS and −1/x potentials are shown; it can be noticed
that the long-range behavior is the same for both of them.

To avoid the difficulties to evaluate thermodynamic properties for
this long-range potential, we propose to rewrite the non-hard-core
potential part as:

1) a finite sum of m Yukawa potentials,

ΦMY xð Þ ¼
Xm
i¼1

¼ �
�
i
exp −κ�

i x−1ð Þ½ �
x

; multi−Yukawa approach; ð3Þ

with the energy and range parameters �i∗=�i/|�min| and κi∗, respec-
tively, and

2) a damped potential, which consists of the product of the original
potential and a damping function f(γ,x),

ΦD γ; xð Þ ¼ f γ; xð Þ U xð Þ
�minj j ; damped approach; ð4Þ

where γ is the damping parameter that can be selected in order
to guarantee that the approximated potential mimics the original
one.

2.2. First-order mean spherical approximation

The first-order mean spherical approximation was developed by
Tang et al., [22] as an improvement of themean spherical aproximation
(MSA) [23].

The solution of the Ornstein–Zernike integral equation under MSA
makes it possible to find analytical thermodynamic and structure ex-
pressions, which otherwise would require time-consuming numerical
work. Despite these advantages, MSAmay lose its solution in unstable
regions [24]. An improvement of this theory is the first-order mean
spherical approximation.

FMSA solves analytically the radial distribution function (RDF) to
first order in terms of inverse temperature. Solutions obtained are
explicit, simpler and always exist in unstable regions [24].

A successful application of FMSA theory was done by Tang et al.,
[22] to the Yukawa and HCMY potentials. A finite sum of Yukawa po-
tentials can mimic other well-known potentials, like Lennard–Jones
potential [20] or sticky hard spheres [25]; however, its efficacy for
LRI like the ETS potential has never been tested to our knowledge.
In this work we will approximate the ETS potential using HCMY poten-
tial to express it.

Fig. 1. Examples of different (repulsive and attractive) long-range potentials, that at
long distances decay as 1/r.

Fig. 2. The ETS potential with α∗=1 (solid line) compared with −1/x potential
(dashed line). Long-range behavior is the same for both potentials.
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