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Phase transitions and structural properties of the two-dimensional systems of hockey stick-shaped molecules
have been examined by means of Monte Carlo simulations and the Onsager-theory. The hockey stick-shaped
particles are modeled as hard bent-core needles. Isotropic–nematic and nematic–smectic antiferroelectric
structural changes are observed. Spontaneously bended nematic structures are also found for such molecular
shapes where the lengths of the segments are similar. The agreement between Monte Carlo and Onsager re-
sults is satisfactory.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Despite the fact that the bent core particles have been synthesized
since about 1930 by Vorländer [1], it was not until the last years when
the importance of V-shape molecules was recognized in the liquid
crystal area. One of the main findings about this molecular shape
was reported by Niori et al. [2]. It was believed that the presence of
chiral molecules in the smectic C phase was necessary to develop fer-
roelectricity. However it was shown that achiral molecules with bent
core shape, called bananas, can produce polar phases [2]. Another in-
teresting characteristic is that achiral molecules like bananas, can
generate chiral phases [3]. After these two discoveries, many experi-
mental studies have been dedicated to the synthesis of banana mole-
cules. Bent core particles are good candidates for applications, for
example, the fabrication of stable liquid crystal fibers [4]. Also the
polar switching by the application of an electric field makes the ba-
nana molecules appropriate for constructing electronic displays [1,5].

Many experimental studies have been dedicated to the synthesis of
banana-shapedmolecules searching for different mesophase character-
istics [4,6]. However, more recently a new kind of banana-shape par-
ticle has been produced, the hockey stick-shaped molecules [7], where
the length of both segments is not the same. Lately, several syntheses
have been proposed where the sizes of the segments are changed to
generate different phase diagrams [8]. Chemical modifications are
performed to produce materials with special phase transitions se-
quences at specific ranges of temperatures, which may lead to the de-
sign of materials with well defined characteristics. In particular, the
generation of nematic (N), smectic A (Sm A) and smectic C synclinic
(Sm Cs) and anticlinic (Sm Ca) and their transition temperatures. Be-
cause of the particular shape, thesemoleculesmay share characteristics

of the calamitics and of the bent coremolecules [9]. Their bent shape en-
hances the formation of layered structures (smectic) if the density of
the system is high enough. On the other hand, depending on the ratio
of the segment's lengths and the angle between the segments, these
bodies can be more anisotopic than the bananas and, therefore able to
produce the nematic phase. It is well accepted that molecular shape
has an important effect on the phase diagrams and physical proper-
ties [9,10]. In this respect, molecular simulations can contribute to this
kind of knowledge.

There is one important difference between hockey stick-shaped
and banana-shaped molecules. Although, the hockey stick-shaped
and the banana-shaped molecules are achiral, the confinement of
these molecules into a flat surface makes the hockey stick-shaped
bodies chiral, while the banana remains achiral.

Several simulation and theoretical studies have been devoted to
understand the phase behavior of bent core particles [11–16].

However, we are not aware of any theoretical and simulation
studies for two-dimensional hockey stick-shaped particles. Chemical
synthesis is in general a hard task, therefore it is important to propose
and to study different molecular conformations in order to suggest
particular molecular shapes that may give rise to interesting proper-
ties. Recently in the nanotechnology area, hockey stick-shaped con-
formations for nano scale objects have been investigated to build
nanomachines [17].

The paper is organized as follows. Section I contains the introduc-
tion, the model and the details of simulations are contained in section
II. Results are presented in Section III and finally section IV is dedicat-
ed to conclusions.

2. Monte Carlo simulations

A two-dimensional hard body model whose shape mimics the
Hokey stick (HS) molecules is studied. Our model particle consists
of two line segments of unequal length. The length of the segments

Journal of Molecular Liquids 185 (2013) 26–31

⁎ Corresponding author. Tel.: +52 55 5622 4510; fax: +52 55 5616 2217.
E-mail address: jaq@unam.mx (J. Quintana-H).

0167-7322/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.molliq.2012.11.020

Contents lists available at SciVerse ScienceDirect

Journal of Molecular Liquids

j ourna l homepage: www.e lsev ie r .com/ locate /mol l iq

http://dx.doi.org/10.1016/j.molliq.2012.11.020
mailto:jaq@unam.mx
http://dx.doi.org/10.1016/j.molliq.2012.11.020
http://www.sciencedirect.com/science/journal/01677322
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molliq.2012.11.020&domain=pdf


is a and b, i.e. the total length of the model particle is L=a+b. The
model is sketched in Fig. 1.

Our previous hard banana study (a=b=1/2) [11] has been ex-
tended by examining the chiral hockey stick-shaped needles at a=
0.4, 0.333, 0.25, 0.175 and 0.125. Note that the total length of the par-
ticle is L=1, i.e. b=1−a. The total number of particles in the simu-
lation cell is N=1000.

The simulations have been performed in the isobaric and isochoric
ensembles. Periodic boundary conditions were applied to both axis of
the simulation box and the minimum-image criterion was also con-
sidered. The density was defined as ρ∗=N/(Lx∗ ∗Ly∗) where Lx

∗ and Ly
∗

are the simulation box length for x and y axes respectively and L is
used to make the lengths dimensionless. The dimensionless pressure
is defined as p∗=pβL2 where β=1/kBT and kBT is the Boltzmann con-
stant. Because the model is athermal the temperature has been set to
kBT=1.

The movements performed in the isochoric ensemble consist of
random changes in the position or orientation of the particles. In
the isobaric simulations, besides the displacements or rotations,
changes in the area of the simulation box are allowed too [18]. In gen-
eral one change of area is done every 5N displacements or rotations.
In this work, this is called a cycle. The standard Metropolis criterion
was used to accept or reject the new configurations, in addition the
maximum values allowed for each kind of movement were modified
during the simulations to get a 30% acceptance rate. The isobaric sim-
ulations were used to obtain the equation of state and the polar and
non-polar nematic order parameters, while isochoric simulations
were used to generate the positional distribution function, g(r), and
the orientational correlation function, g2(r).

For all isobaric simulations, a compression process starting with a
pressure small enough to have an isotropic equilibrated configuration
was used. The pressure was increased slowly and for each pressure
the initial configuration was the final one of the previous pressure.
Approximately 106 Monte Carlo cycles were required to assume equi-
librium and other 105 to obtain averages.

The nematic order parameter, S, is given by the largest eigenvalue
of the traceless symmetric tensor Tij=2〈ωiωj〉−δij. “〈〉” denotes an
ensemble average, δij is the Kronecker delta function and ωi is the
i-component of the orientational unit vector. It is well known that
for finite size systems, S depends on the number of particles, and
for hard straight needles it goes to zero in the thermodynamic limit.
Instead of long range order, quasi long range order takes place, as
a result the orientational correlation function defined as g2(r)=
〈cos(2ϕ(0)−2ϕ(r))〉 changes its behavior from an exponential decay
(isotropic phase) to an algebraic decay (nematic phase) [19]. The
change from exponential to algebraic decay serves as the critical density
of the isotropic–nematic continuous transition.

Although the change from exponential to algebraic decay in the
correlation functions is an indication of the Kosterlitz–Thouless (KT)
phase transition [20], which is typical in 2D systems, this cannot be
taken strictly as a sufficient condition to assure a KT type. A more de-
tailed study of the change of some properties would be required
when the system size increases. For example, such as to verify the
non singular behavior of the heat capacity and that the nematic
order parameter S→0 when N→∞.

3. Onsager's theory

In the frame of the Onsager theory the Helmholtz free energy is
written as the sum of an ideal energy and an excess contribution:

βF
A

¼ βF id
A

þ βFex
A

; ð1Þ

where A is the total area.
The ideal part of the nematic free energy is given by

βF id
A

¼ ρ ln ρð Þ−ρþ ρσ f½ �; ð2Þ

where σ [ f ]=∫0
2πdϕf(ϕ)ln(2πf(ϕ)), ρ is the number density, ϕ is the

angle between the molecular axis and the y-axis and f(ϕ) is the orien-
tational distribution function (ODF). For a hard potential the excess
free energy is,

βFex
A

¼ 1
2
ρ2∫2π

0 dϕif ϕið Þ∫2π
0 dϕjf ϕj

� �
Aexc γð Þ; ð3Þ

where Aexc(γ) is the excluded area and γ=ϕi−ϕj. As a consequence,
the free energy becomes

βF
A

¼ ρ ln ρð Þ−ρþ ρσ f½ � þ 1
2
ρ2∫2π

0 dϕi f ϕið Þ∫2π
0 dϕj f ϕj

� �
Aexc γð Þ: ð4Þ

If the ODF and the excluded area are written as their Fourier series
f=∑i ficos(iϕ) and Aexc=∑iaicos(iϕ), where fi and ai are the Fourier
coefficients of the ODF and the excluded area, then the free energy
becomes

βF
A

¼ ρ ln ρð Þ−ρþ ρ σ f½ � þ 1
2
ρ2 a0 þ

XN
j¼1

f 2j aj π
2

8<
:

9=
;: ð5Þ

The ODF-coefficients are those that minimize the free energy. In
the isotropic phase f0=1/2π and the higher order terms are zero. In
the nonpolar nematic phase the even terms ( f2, f4,…) are nonzero,
while for the polar nematic phase both the even and the odd terms
are nonzero.

For aweaknematic order thefirst nonvanishing termcanbe either f1
or f2. In the polar nematic phase f1 is nonzero, and it can be derived from

Eq. (5) that the polar free energy is
βFp
A

≅βF iso
A

þ ρπ2f 21 þ 1
2
ρ2f 21a1π

2,

where βFiso/A is the free energy of the isotropic phase. For nonpolar
phase f2 is the first nonvanishing term and we can get from Eq. (5)

that
βFa
A

≅βF iso
A

þ ρπ2f 22 þ 1
2
ρ2f 22a2π

2. Note that the second term of the

above equations comes from σ [ f ].
At the isotropic–nematic bifurcation the isotropic and the nematic

free energy must be equal, therefore we end up with the following
equations for the bifurcation density

ρIN
bif ¼ min − 2

a1
;− 2

a2

� �
: ð6Þ

We have not observed polar bifurcation in our calculations, i.e. the
isotropic phase transforms into nonpolar nematic phasewith increasing
density for all studied molecular shapes.

For the nematic–smectic antiferroelectric phase transition, a ver-
sion of the theory was developed in the limit of perfect nematic
order, when all particles are parallel. To take the effect of the orien-
tational entropy into account, we consider the binary mixture of
the particles, where the particles' orientations of the components
are opposite. For such system, each orientation corresponds to a spe-
cific geometric polarity; in this light, we have a mixture of particles

Fig. 1. Hard body representation of a hockey stick-shaped (HS) molecule consisting of
two line segments with a+b=L=1 and a bend angle θ between them. The arrow does
not belong to the particle, it represents its polar axis.
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