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The high-temperature expansion of the free energy of a fluid of square wells, SW, is considered. The first four
terms in this expansion are calculated for SW systems of variable range λσ, where σ is the diameter of the spher-
ical hard-core. The properties were calculated viamolecular dynamics, MD, for ranges 1≤λ≤2.5with special em-
phasis on the region of shorter ranges: λ=1.025, 1.050, 1.075, 1.100, 1.125 and 1.150. The principal aims are to
compare these results with the previous ones obtained using the Monte Carlo, MC, method (Espíndola-Heredia
et al. J. Chem. Phys. 130, 024509 (2009)) that showed large statistical noise in the higher-order terms at high den-
sities, and to provide a benchmark to check the theoretical Short-Range Expansion of the free energy of these sys-
tems. The results have been corrected to obtain the thermodynamic limit via a change of ensemble algorithm and
by simulating systems with 125, 200, 500 and 1000 particles. The MD results are much smoother that the corre-
sponding MC data and their precision allow to determine the behavior of the series for high densities. The simu-
lation results are used to test a theory built to write the free energy for short ranges. The position of the critical
point is calculated with this theory for very short ranges.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The square-well, SW, potential is one of the simplest fluid models
incorporating an attractive force that resembles the dispersion forces
in real fluids, this in addition to a spherical hard-core. This interaction
is defined by:

u rð Þ ¼
∞; r≤ σ ;

−�; σ < r≤ λσ ;

0; λσ < r;

8><
>: ð1Þ

where σ is the hard-core diameter of the particle, λ=r/σ is the re-
duced range of its potential well, and is its depth. The simplicity of
this SW interaction, together with the flexibility of its phase diagram
upon variation of its range, has spurred plentiful studies. Interest in
the behavior of short-ranged SW fluids (that is, with 1≤λ≤1.25)
has been renewed in recent years due to their use in the modeling
of protein crystallization and colloidal dispersions. Among the works
concentrating on short-ranged SW fluids, we may mention the calcula-
tion of pair correlation functions [1,2], phase equilibria [3–6], and inter-
facial properties [7]. Also, a modification of the Monte Carlo method,
appropriate to deal with short-ranged potentials, has been introduced

recently [8]. The special case of the approach of the SW fluid to the ad-
hesive hard-sphere, AHS, limit has attracted much attention since the
work of Baxter; [9]we point out to the study at very short ranges carried
out by Largo et al. [10] The current state of affairs in thismatter has been
considered by Pini et al. [11].

The free energy is of paramount importance because its knowledge
as a function of the appropriate variables permits the calculation of all
thermodynamic properties of the homogeneous system, and a practical
route to the free energy is the high-temperature, HT, perturbation the-
ory developed for the SW system by Barker and Henderson [13]. Two of
themain uses of the SW free-energy are in the very successful statistical
associating-fluid theory, SAFT, in its variable range version [14–16], and
in the discrete perturbation theory, DPT [17]. In particular, in order to
treat soft-core potentials, the latter theory needs knowledge of the
first HT terms of the SW fluid for short ranges. After the pioneering
work of Barker and Henderson [13] and of Alder et al., [18] who calcu-
lated the first two terms in the HT series for SW of λ=1.5, the case of
several λ's was considered by Henderson et al. [19] More extensive cal-
culations of the first two terms were carried out by Largo and Solana by
the Monte Carlo method [20], which included the cases with λ=1.1
and 1.2. More recently, Espíndola-Heredia and co-workers calculated
the first four terms for 1.1≤λ≤3, also by the Monte Carlo method,
and studied the variation of the statistical uncertainties with the size
of the system [21]. The results of this work for the shortest ranges,
λ≤1.2 had however higher errors and, also, the third- and fourth-order
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terms showed large fluctuations at high densities, both effects probably
due to problems with the statistical sampling.

The main purpose of this work is to provide the first few HT pertur-
bation terms of the Helmholtz free energy for SW systems with short
ranges: λ=1.025, 1.050, 1.075, 1.100, 1.125 and 1.150. The method is
based on molecular dynamics simulations of hard-sphere systems.
This information complements previous works, gives more reliable
values of the free energy at high densities and allows us to check the ac-
curacy of a theory developed some time ago for short-ranged SW fluids.
This theory, named Short-Range Expansion, SRE, gives the perturbation
terms as series in powers of λ−1. The SRE can be used to obtain, among
other properties, the critical points of the SW fluids at short ranges.

This work is arranged as follows: Section 2 incorporates the neces-
sary information about the HT perturbation expansion and the SRE.
Then, Section 3 describes briefly the computer simulations performed.
Section 4 presents and discusses the main results of the work, and in
the last section the principal conclusions are drawn.

2. Theory

2.1. High-temperature expansion of SW free energy

In this study, the main quantity of interest is the Helmholtz free
energy of the SW fluid, A(ρ,T), from which all static thermodynamic
properties can be derived. We introduce the reduced free energy per
particle as

a ¼ A
NkBT

; ð2Þ

where N is the number of particles, kB is the Boltzmann constant, and
T is the temperature. The perturbation theory for non-polar gases
was originally proposed by Zwanzig [12]. Here we make extensive
use of the Barker–Henderson perturbation theory that introduces a
high-temperature expansion of the form [13]

a ¼ aHS ρð Þ þ
X∞
n¼1

an
T�n : ð3Þ

Here aHS(ρ) is the free energy of a reference hard-sphere, HS, system,
an(ρ) are the perturbation coefficients and T∗=kT/�. In these equations
ρ=Nσ3/V is the reduced particle density over the volume V. The coeffi-
cients an are calculated as certain averages, specified below, over the HS
system [13]. Let the particles of theHSfluid be in a certain configuration,
then M is the number of particle pairs in the system such that their
center-to-center distance r lays within the well, that is, with σbrbσλ,
then the first four perturbation coefficients are given by [13]

a1 ¼ − Mh i0=N;
a2 ¼ − M− Mh i0

� �2D E
0
=2N;

a3 ¼ − M− Mh i0
� �3D E

0
=6N;

and
a4 ¼ M− Mh i0

� �4D E
0
−3 M− Mh i0

� �2D E
0

� �
=24N:

ð4Þ

In these equations the subscript 0means the averages are calculated
in a hard-sphere system. The first two terms of this perturbation series
have been calculated for various values of λ≥1.2 by several authors
[20]. Recently [21], the first four terms were calculated for 1.2≤λ≤3
by the Monte Carlo method. In this work we concentrate on two
unresolved questions: 1) How is the behavior of the coefficients for
short ranges? and 2) How is the behavior of the higher-order terms at
densities higher than 0.5?

We are also interested in the compressibility factor, Z=PV/NkBT,
where P is the pressure. This factor is obtained readily from the free
energy

Z ¼ ρ
∂a
∂ρ

� �
T

ð5Þ

and has a high-temperature expansion equivalent to Eq. (3)

Z ¼ ZHS ρð Þ þ
X∞
n¼1

Zn

T�n ; ð6Þ

where ZHS is the compressibility factor of the HS system and each
coefficient Zn is related to the corresponding an by an equation
similar to 5.

Here we use for ZHS the very accurate formula due to Kolafa and
given by [22].

ZHS ¼
1þ ηþ η2−2

3 η3 þ η4
� �

1−ηð Þ3 ; ð7Þ

where the packing fraction is η=πρ/6. This equation is also used
below for calculating the correction due to change from the NVT en-
semble to the μVT ensemble.

2.2. Short-Range Expansion of the SW free energy

The availability of reliable values of the free-energy coefficients a1,
a2, …, allows to test the Short-Range Expansion, SRE, of the SW fluid
free-energy introduced years ago [23]. This theory is an expansion in
powers of λ−1 of the perturbation coefficient ai:

an ρ;λð Þ ¼
X∞
m¼1

ϕmn ρð Þ λ−1ð Þm: ð8Þ

To the third order in λ−1 the functions ϕnm are expressed by

ϕ11 ¼ f 11
ϕ21 ¼ f 21
ϕ31 ¼ f 31
ϕ12 ¼ f 11=2
ϕ22 ¼ f 21=2þ f 22
ϕ32 ¼ f 31=2þ f 32
ϕ13 ¼ f 11=6
ϕ23 ¼ f 21=6þ f 22
ϕ33 ¼ f 31=6þ f 32 þ f 33

ð9Þ

where the coefficients fmn are given by terms containing contact values
of the HS background correlation function y xð Þ ¼ euHS xð Þ=kBTgHS xð Þ and
its various derivatives with respect to x and packing fraction η; here
x=r/σ, and uHS(x) are the potentials of the HS system, and gHS(x) is
the corresponding radial distribution function. One finds [23],

f 11 ¼ −12 ηy0

f 21 ¼ −12 ηy0−6 ηy0x
f 22 ¼ 18 η2y0η−6 ηy0x
f 31 ¼ −4 ηy0−8 ηy0x−2 ηy0xx
f 32 ¼ 36 η2y0η−18 ηy0x þ 18 η2y0xη−6 ηy0xx
f 33 ¼ −10 ηy0x−18 η3y0ηη þ 18 η2y0xη−4 ηy0xx:

ð10Þ

In these equations, the superscript “0”means a quantity calculated
at x=1with yξ=∂y/∂ξ and yξζ=∂ 2y/∂ξ∂ζwhere ξ and ζ are either η
or x. The terms y0, yη0 and yηη

0 are obtained directly from (7), whereas
yx
0, yxx0 and yxη

0 are obtained to good approximation [24] from the
Verlet–Weis algorithm for gHS(x) [25].
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