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Shoulder–square well fluids are studied for different heights and locations of the shoulder. The vapor–liquid
metastable coexistence is accessed by combining the slab technique and the replica exchange Monte Carlo
method. Phase diagrams and structural properties are reported. It was shown that the shoulder height as
well as its location plays an important role on the shape of the phase diagrams. The shoulder acting as a bar-
rier always produces denser liquid and solid states in coexistence with less dense vapors. A shift of the shoul-
der position to larger distances leads to lower critical temperatures and higher critical densities.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There are several examples of common substances showing com-
plex thermodynamic behaviors [1–3]. These are, among others, water,
phosphorus, carbon, metal crystals (cerium and cesium), micellar
structures, silica, granular materials, proteins, and colloids (see Ref.
[4] and references therein). In particular, water, in addition to its
well known melting curve with negative slope, shows a second criti-
cal point at high pressures, as well as a liquid–liquid transition at high
pressures and temperatures [5,2]. Of course, this rich behavior is a
consequence of the nontrivial collective interaction between the sys-
tem entities, and therefore, such systems have attracted a great deal
of attention. On the one hand, there is a large number of works devot-
ed to developing detailed models for quantitatively reproducing all
thermodynamic properties [6–8], and on the other hand, several
works deal with the simplest models capable of qualitatively captur-
ing some characteristics of this complex behavior [9–11]. In this last
context, a combination of square shoulder and square well potentials,
which have been widely studied in the literature [12–16], captures
real substance complex behaviors such as the presence of several crit-
ical points. The combination of the square shoulder and the square
well potentials results in the interaction pair known as shoulder–
square well (SSW) [1,4,17–21].

Using different techniques such as molecular dynamics, Monte
Carlo (MC) simulations, and perturbation theory, it was shown that
the SSWmodel can yield anomalies in the phase diagram [1,4,17–24].
Depending on the parameter values defining the SSW, one can find
different kinds of phase transitions [25]. For instance, Skibinsky
et al. [4], Cervantes et al. [19], and Rzysko et al. [20] reported the

existence of more than one critical point and fluid–fluid transitions.
That is, the phase diagram may show a vapor–liquid critical point
and/or a liquid–liquid critical point. Despite the simplicity and the
importance of the SSW potential, so far there are mostly theoretical
studies dealing with its coexistence and structural properties. Howev-
er, to the best of our knowledge, the SSW has been poorly studied by
using computer simulations.

In a recent study [26] we analyzed the shoulder–square well po-
tential where the shoulder is placed at contact with the hard-sphere
discontinuity. In this case, we focus our attention on a single vapor–
liquid critical point, and on how higher energy shoulders produce a
lower proportion of short bonding distances. Likewise, at very low
temperatures the crystallization was observed to occur more easily
by restricting the bonding distances. Furthermore, we reported the
formation of a gel-like phase for certain conditions. In this work we
also studied the phase diagram region below the vapor–liquid critical
point, but in this case we considered both, a shoulder placed at con-
tact with the hard-sphere discontinuity and followed by a square
well, and a square well followed by a shoulder (acting as a barrier).
Hence, the main purpose of this work is to show the effect of the
height and location of the shoulder on the vapor–liquid coexistence
and structural properties of SSW fluids.

2. Potential models

A system composed by N spherical particles with diameter σ was
considered. The particles interact via a discrete potential known as
shoulder–square well, which is defined by

U rð Þ ¼
∞; for r≤σ ;
�1; for σ < r ≤ λ1;
�2; for λ1 < r ≤ λ2;
0; for r > λ2;
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where r is the interparticle distance, λ1 and λ2 define the shoulder
and well widths, and �1 and �2 are the corresponding energy values
(see Fig. 1). In case a) of Fig. 1, λ1 and �1 correspond to the shoulder
whereas λ2 and �2 define the attractive well. Conversely, in case b), λ1

and �1 correspond to the attractive well while λ2 and �2 define the
shoulder (acting as a barrier).

As mentioned in the Introduction, the location and the height of
the shoulder are varied. This is done by selecting six series of param-
eters as shown in Table 1, where λ1=1.25 and λ2=1.5 are kept
constant.

3. Simulation details

The replica exchange Monte Carlo (REMC) simulation method
[27–29] is used to obtain the coexistence and structure properties of
shoulder–square well fluids. This method was derived to achieve
good sampling of systems presenting a free energy landscape with
several local minima. The method consists of simulating M replicas
of the system in parallel, each being at different thermodynamic con-
ditions, while performing exchange (swap) trials between them. Due
to these exchanges, a particular replica travels through different ther-
modynamic conditions, allowing it to overcome free energy barriers.

The REMC is set to sample an extended canonical ensemble taking
the temperature as the expansion thermodynamic variable. The exis-
tence of this extended ensemble justifies the introduction of swap tri-
als between replicas, with the restriction that the detailed balance
condition is fulfilled. This technique allows exploring efficiently the
regions of coexistence at low temperatures where traditional simula-
tion methods tend to get trapped at local, free energy minima. The ex-
tended canonical ensemble is defined as

Qext ¼ ∏
M

i¼1
QNVTi

; ð2Þ

where QNVTi
is the partition function of the canonical ensemble of the

system at temperature Ti, V is the volume of the cell, and N is the
number of particles at each replica. M is the number of system rep-
licas, which matches the number of different temperatures. To satisfy
the detailed balance condition, the probability of acceptance of the
exchange is given by

Pac ¼ min 1; exp βj−βi

� �
Ui−Uj

� �h i� �
; ð3Þ

where Ui−Uj is the potential energy difference between replicas i and
j and βj−βi is the difference between the corresponding reciprocal
temperatures.

We set rectangular simulation boxes of dimensions Lx=Ly=8σ
and Lz=50σ. Periodic boundary conditions are set in the three direc-
tions. Verlet lists are implemented to improve performance. A collec-
tion of 800 particles were randomly placed at a slab centered [30]
inside the M=12 boxes (the center of mass of the system is kept at
the cell center). This is appropriate for capturing the vapor–liquid
metastable coexistence. Different initial conditions should be set in
order to capture other coexistences. The highest temperature was
set at a value very close to the critical temperature of the system,
while the other temperatures were established following a decreas-
ing geometric progression. The initial configuration is equilibrated
by conducting 107 MC simulation steps. All results were calculated
over additional 4×107 configurations.

To detect crystal structures, the order parameter (Q6) was calcu-
lated at the dense phase. This parameter is a quantitative measure
of the bond order of the system, and it is achieved through defining
a set of bonds that connect pairs of neighbors. It is defined as [31]

Q6 ¼ 4π
13

X6
−6

Y6m θ;ϕð Þh ij j2
 !1=2

; ð4Þ

where 〈Y6m(θ,ϕ)〉 is the ensemble average of all bonds of the spherical
harmonics of the orientation angles θ and ϕ (which are the polar an-
gles with respect to a fixed coordinates system). The value of Q6 tends
to zero for a completely random system of a large number of bonds,
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NNn=2

p � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13NNn

p
, whereas it increases when bonds show an-

gular correlations [31].
The densities of the coexistence phases were obtained by ensem-

ble averaging from the corresponding regions. The coexistence curves
are obtained from these data. The critical density and temperature
were calculated by using the rectilinear diameters law and the uni-
versal value of β=0.325 [32]. All results are presented in dimension-
less units, i.e., r∗=r/σ for distance, T∗=kBT/ 2 for temperature, and
ρ∗=ρσ3 for density.

Fig. 1. Schematic diagram of SSW potential for λ1=1.25, and λ2=1.5 (these values are set constant along this work). a) Shoulder placed at contact with the hard-sphere discon-
tinuity and followed by a square well. b) Square well followed by a shoulder (acting as a barrier).

Table 1
Parameters of SSW potential for the different cases studied. Energy units are given in
kBT.

Case �1 �2

1a 1 −1
1b −1 1
2a 0.5 −1
2b −1 0.5
3a −0.5 −1
3b −1 −0.5
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