FISEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Molecular Liquids

journal homepage: www.elsevier.com/locate/molliq

Liquid viscosities, excess properties, and viscous flow thermodynamics of triethylene glycol + water mixtures at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K

Zhenhua Guo ^a, Jianbin Zhang ^{a,b,*}, Tong Zhang ^{a,**}, Chunping Li ^{a,b}, Yongfeng Zhang ^{a,b}, Jie Bai ^{a,b}

ARTICLE INFO

Article history:
Received 11 May 2011
Received in revised form 29 September 2011
Accepted 6 October 2011
Available online 20 October 2011

Keywords: Triethylene glycol Excess molar volume Viscosity Density Viscous flow thermodynamics

ABSTRACT

This paper reports measurements of densities and viscosities for the binary mixtures of triethylene glycol (TEG) + water as a function of composition at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. Densities were measured using a capillary pycnometer and viscosities were determined with an Ubbelohde capillary viscometer. The experimental results are compared with data published in the literatures. From the experimental data, including density and viscosity values, the excess molar volumes $V_{\rm m}^{\rm E}$, and viscosity deviations $\Delta \nu$, the calculated results are fitted to a Redlich–Kister equation to obtain the coefficients and estimate the standard deviations between the experimental and calculated quantities. The values of $V_{\rm m}^{\rm E}$ are negative in the whole composition range, whereas the values of $\Delta \nu$ are positive over the major composition range. From the kinematic viscosity data, enthalpy of activation for viscous flow (ΔF^*) and entropy of activation for the viscous flow (ΔF^*) were calculated.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Sulfur dioxide (SO₂) is one of the most significant atmospheric pollutants and its emission is directly related to combustion processes, such as the consumption of fossil fuels and burning of biomass [1]. It is known to have crucial effects on human health and environment, and as a consequence, receives more and more attention. Presently, there are several ways of reducing SO₂ emissions from flue gases [2-4]. Limestone-based wet flue gas desulfurization (WFGD) technology has been seen as the most effective method for the control of SO₂ from coal fired boilers [5]. However, WFGD produces the dry product of gypsum, which is difficult to recycle, so that a preferable method has been developed. Recently, more and more organic solvents are used in gas sweetening absorption processes [6,7]. Among numerous organic solvents, alcohols show favorable absorption and desorption properties for acid gases in industrial processes [8,9], for this reason, the alcohol + water systems for SO₂ scrubbing had been paid particular attention in previous works [10–15].

Ethylene glycol (EG) and its similar compounds of various molecular weights showed important chemical uses in the removal of SO₂ from flue gas [4] due to their low vapor pressure, low toxicity, high chemical stability, and low melting point. The primary advantages

of triethylene glycol (TEG) may be also related with high solubility and desorption capability for SO_2 . The knowledge of physicochemical properties of TEG+ water mixtures (TEGW) over a wide range of temperatures is important for practical applications in flue gas desulfurization (FGD) [16]; however, the previous literatures [17–32] show that only the partly mixing properties of TEGW have been reported. Therefore, we have to carry out the measurements for densities and viscosities of TEGW.

This paper is a part of the systematic studies on the physicochemical properties of binary mixtures of EG and its similar compounds [9–15,33,34]. In present work, the densities and viscosities of TEGW are reported in the temperatures range of (298.15 to 318.15) K, over the entire mole fraction range of TEG under atmospheric pressure. From these results, the excess molar volumes ($V_{\rm m}^{\rm E}$), viscosity deviations ($\Delta \nu$), enthalpy of activation for viscous flow (ΔH^*), and entropy of activation for the viscous flow (ΔS^*) were calculated.

2. Experimental section

2.1. Materials

Analytical grade TEG was purchased from Beijing Reagent Company. TEG was dried over 0.4 nm molecular sieves before measurements, and it was degassed by ultrasound just before the experiment. The purity of the sample was checked by density and viscosity determination at 298.15 K. The density and viscosity of TEG at 298.15 K was found to be 1.1192 g cm⁻³ and 35.8 mPa s, in good agreement with the literatures [17–22,27,29]. Bi-distilled water was used in present work.

^a College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China

b Institute of Coal Conversion & Cyclic Economy, Inner Mongolia University of Technology, Huhhot 010051, China

^{*} Correspondence to: J. Zhang, College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot 010051, China. Tel.: $+86\,471\,5275722$; fax: $+86\,471\,5275722$.

^{**} Corresponding author. Tel.: +86 471 5275722; fax: +86 471 5275722.

E-mail addresses: tadzhang@pku.edu.cn (J. Zhang), tongz@imut.edu.cn (T. Zhang).

2.2. Measurements

Solvent mixtures were prepared by mass using an electronic analytical balance with a precision of $\pm\,0.0001$ g (Sartorius BS 224S). The uncertainty in the mole fraction for each binary mixture was estimated to be $\pm\,0.0001$.

Densities of pure liquids and their mixtures were determined using a bicapillary pycnometer with a bulb volume of $10~\rm cm^3$. The volume of the pycnometer was calibrated as a function of temperature using distilled, deionized, and degassed water at various temperatures of (298.15, 303.15, 308.15, 313.15, and 318.15) K. A thermostatically controlled and well-stirred water bath, which was controlled to \pm 0.01 K, was used for all the density and viscosity measurements. The pycnometer filled with liquid was kept in the water bath for 25 min to attain thermal equilibrium. Each experimental density value was an average of at least three measurements; furthermore, the uncertainty of the density measurements was estimated to be \pm 0.03%.

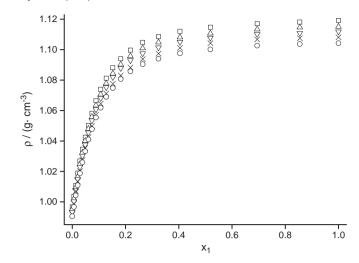
The kinematic viscosity in both the pure components and their mixtures was made with a commercial capillary viscometer of the Ubbelohde type, which was calibrated with bi-distilled water and ethanol (HPLC grade) at T = (298.15 to 318.15) K. The flow time was determined with a hand-held digital stopwatch capable of measuring time within ± 0.01 s. The average of sixteen flow times for each fluid was taken for the purpose of the calculation of viscosities.

The kinematic viscosity (ν) was calculated from the following equation

$$\nu = At - \frac{B}{t} \tag{1}$$

where ν denotes the kinematic viscosity; t denotes flow time of liquids; and A and B denote viscometer constants, respectively. A and B are calculated from measurements with the calibration fluids. The absolute viscosity (η) was obtained by multiplying the determined ν by the measured density $(\eta = \nu \rho)$. We estimated the uncertainty of the viscosity measurement to be lower than \pm 0.3 %.

The experimental densities and viscosities of pure TEG at the various temperatures are compared with the reported literature values and listed in Table 1.


3. Results and discussion

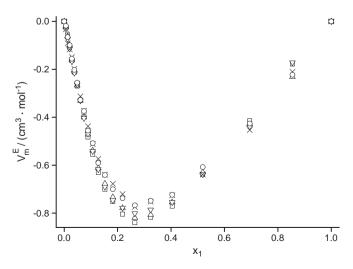
Experimental densities of TEGWs at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K throughout the whole concentration range are plotted in Fig. 1.

Fig. 1 show that the density values increase with the increasing TEG concentration in TEGWs over the whole concentration range.

Table 1 Comparison of experimental densities (ρ) , viscosities (η) , of TEG with literature values at various temperatures.

T/K	$\rho/(g \text{ cm}^{-3})$		η(mPa s)	
	Exptl.	Lit.	Exptl.	Lit.
298.15	1.1192	1.11966 ¹⁷ , 1.11959 ¹⁸ , 1.11950 ¹⁹ , 1.11984 ²⁰ 1.11979 ²¹ , 1.11991 ²² 1.11976 ²³ , 1.11978 ³⁰	35.8	34.9398 ¹⁸ , 37.26 ²⁸
303.15	1.1151	1.11583 ¹⁷ , 1.11588 ¹⁸ 1.11585 ²²	28.9	29.256 ²⁵ , 29.224 ²⁶
308.15	1.1118	1.11196 ¹⁸ , 1.11207 ²⁰ 1.11196 ²¹ , 1.11209 ²² 1.11209 ²⁴ , 1.11259 ²⁹ 1.11261 ³⁰ , 1.1120 ³¹ 1.11210 ³²	23.0	21.306 ¹⁸ , 23.841 ²⁴ 22.853 ²⁵ , 22.961 ^{26, 27}
313.15	1.1081	1.10953 ¹⁸ , 1.10802 ²² 1.1080 ²⁶	18.3	19.8 ³³
318.15	1.1042	1.10427 ²⁰ , 1.10430 ²¹ 1.10413 ²² , 1.10430 ²³	14.9	

Fig. 1. Experimental densities with mole fraction for TEG (1) + water (2): \Box , 298.15 K; \triangle , 303.15 K; ∇ , 308.15 K; \times , 313.15 K; \bigcirc , 318.15 K.


Especially, the values quickly increase in the range of $x_1 = (0 \text{ to } 0.26)$. Meanwhile, the density values decrease with the augment of temperatures at the same composition.

The excess mole volume, $V_{\rm m}^{\rm E}$, was calculated from density measurements according to the following equation

$$\mathbf{V}_{m}^{E} = \frac{x_{1}M_{1} + x_{2}M_{2}}{\rho_{m}} - \left(x_{1}\frac{M_{1}}{\rho_{1}} + x_{2}\frac{M_{2}}{\rho_{2}}\right) \tag{2}$$

where $\rho_{\rm m}$ denotes the density of the mixture and $x_1, \rho_1, M_1, x_2, \rho_2$, and M_2 denote the mole fractions, densities, and molecular weights of pure TEG and pure water, respectively. The dependence of $V_{\rm m}^{\rm E}$ at various temperatures is plotted in Fig. 2.

From Fig. 2, $V_{\rm m}^{\rm E}$ is negative for all the mixtures over the entire mole fraction range at each temperature, as is common for other completely miscible (water+organic) solvents. The maximum is found at about $x_1=0.26$, which indicates that one TEG molecule can combine 3 water molecules to form one tighter complex in the TEGW system. Additionally, these $V_{\rm m}^{\rm E}$ values become less negative with the increasing temperatures.

Fig. 2. Excess mole volumes with mole fraction for TEG (1) + water (2): \square , 298.15 K; \triangle , 303.15 K; ∇ , 308.15 K; \times , 313.15 K; \bigcirc , 318.15 K.

Download English Version:

https://daneshyari.com/en/article/5412428

Download Persian Version:

https://daneshyari.com/article/5412428

<u>Daneshyari.com</u>