ELSEVIER



Journal of Molecular Liquids



journal homepage: www.elsevier.com/locate/molliq

# Topological studies of molecular interactions of 1,4-dioxane with formamides or anilines at 308.15 K

## Santosh Kumar<sup>a</sup>, Anurag Maken<sup>b</sup>, Shalu Agarwal<sup>c</sup>, Sanjeev Maken<sup>c,\*</sup>

<sup>a</sup> Department of Materials Science and Engineering, Yonsei University, 134 Shinchon Dong, Seodaemoon Ku, Seoul 120-749, South Korea

<sup>b</sup> Department of Chemical Engineering and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India

<sup>c</sup> Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India

#### ARTICLE INFO

Article history: Received 5 May 2010 Received in revised form 30 May 2010 Accepted 31 May 2010 Available online 9 June 2010

Keywords: 1,4-Dioxane Anilines Amides Molar excess volume Graph theoretical approach

#### ABSTRACT

Molar excess volumes have been measured for 1,4-dioxane (A) + formamide, or N,N-dimethylformamide, aniline, N,N-dimethylaniline (B) mixtures at 308.15 K. For an equimolar A + B mixture, molar excess volumes follow the sequence: aniline < formamide < N,N-dimethylformamide < N,N-dimethylaniline. The excess volume data have also been rationalized by graph-theoretical arguments. This analysis has further yielded information about the state of association in aniline, formamide and N,N-dimethylformamide that is consistent with the existing views on their nature of association. The existence of molecular entities in these mixtures has also been supported by their infrared spectral studies.

© 2010 Elsevier B.V. All rights reserved.

#### 1. Introduction

Considerable controversy surrounds the state of pure aniline. Thus while Bellamy and Williams [1] maintain that aniline in the pure state exists as monomers, Wolf and Mathias [2] as also Kreglewski and Wilhoit [3] favor the associated structures in which one of the hydrogen atom of its NH<sub>2</sub> group is free to form H-bond and the other hydrogen atom is involved in weak interactions with the  $\pi$ -cloud of another aniline molecule. Further in view of the two well known resonance structures [4] of the amide group, the lower amides in pure state may exist like alkanols [5,6], as dimers and higher r-mers, though Davies [7] favor dimeric state for them in solution. The addition of 1,4-dioxane (A) to either aniline or formamide (B) thus provide an ideal situation of H-bonded interaction resulting in the formation of various molecular entities. Although such a situation can be handled by the Ideal association model approach [8,9] yet the result would be strongly dependent on the particular type of model assumed for A and/or B. This calls for an entirely different approach. Since A + B mixture is formed by the replacement of like contacts in the pure state by unlike contact in the mixture and as the formations of molecular entities in the present (A + B) mixtures may be visualized [10] to be due to the changes in the topology of A brought on by B, it appears that a recent Graph theoretical approach [11–13] should not only provide valuable information about the state of A and/or B in an (A + B) mixture but should also be in a position to explain as to why only certain characteristic infra-red absorptions in A and/or B are influenced in the process of mixture formation. This prompted us to perform molar excess volume studies at 308.15 K for 1,4-dioxane (A) + aniline or formamide or N,N-dimethylaniline (DMF) or N,N-dimethylformamide (B) mixtures.

#### 2. Experimental section

Aniline, formamide, N,N-dimethylaniline (DMA), N,N-dimethylformamide (DMF), 1,4-dioxane (Merck or Sigma) were purified by standard procedures [14,15]. The purities of the purified samples were checked by measuring their densities and refractive indices at 298.15 K and 308.15 K. The densities were measured with a precision of  $\pm 5 \times 10^{-5}$  g cm<sup>-3</sup> by a specially designed densimeter, consisting of a bulb of approximate volume 35 cm<sup>3</sup> attached to a calibrated capillary through a B-10 standard joint in the manner described by Weissenberger [16]. Air buoyancy correction was also applied to achieve a greater accuracy. Refractive indices were measured with a thermostatically controlled Abbe refractometer (OSAW, India) using sodium D-line with an accuracy of  $\pm 0.0001$ . Our experimental values for the densities and refractive indices of the pure compounds compared well with the literature values as shown in Table 1. Molar

<sup>\*</sup> Corresponding author. Tel.: +91 98965 92603; fax: +91 130 2484004. *E-mail address:* sanjeevmakin@gmail.com (S. Maken).

<sup>0167-7322/\$ -</sup> see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.molliq.2010.05.023

#### Table 1

Measured densities ( $\rho$ ) and refractive indices ( $n_D$ ) of the pure components at 298.15 and 308.15 K.

| Compound    | Temperature K | $ ho/(\mathrm{g}\mathrm{cm}^{-3})$ |              | n <sub>D</sub>      |               |  |
|-------------|---------------|------------------------------------|--------------|---------------------|---------------|--|
|             |               | Exptl.                             | Lit. [Ref.]  | Exptl.              | Lit. [Ref.]   |  |
| 1,4-Dioxane | 298.15 K      | 1.02791                            | 1.02797 [17] | 1.4204              | 1.42025 [17]  |  |
|             |               |                                    | 1.02787 [18] |                     | 1.419948 [18] |  |
|             |               |                                    | 1.0286 [19]  |                     | 1.4203 [19]   |  |
|             | 308.15        | 1.0173                             | 1.0172 [19]  | 1.4146              | 1.4145 [19]   |  |
| Formamide   | 298.15        | 1.12884                            | 1.12878 [20] | 1.4461              | 1.44597 [21]  |  |
|             |               |                                    | 1.1291 [21]  |                     |               |  |
|             | 308.15        | 1.11986                            | 1.11984 [20] | 1.4425              | 1.44258 [21]  |  |
|             |               |                                    | 1.1202 [21]  |                     |               |  |
| N,N-DMF     | 298.15        | 0.94385                            | 0.94387 [17] | 1.4282              | 1.42817 [17]  |  |
|             |               |                                    | 0.9439 [22]  |                     |               |  |
|             |               |                                    | 0.94385 [23] |                     | 1.4282 [22]   |  |
|             |               |                                    | 0.94394 [20] |                     |               |  |
|             | 308.15        | 0.93466                            | 0.93464 [20] | 1.4305 <sup>a</sup> | 1.43047 [17]  |  |
| Aniline     | 298.15        | 1.01755                            | 1.01750 [17] | 1.5836              | 1.58364 [17]  |  |
|             |               |                                    | 1.0176 [24]  |                     | 1.5836 [24]   |  |
|             | 308.15        | 1.00860                            | 1.00862 [17] | 1.5784              | 1.57836 [17]  |  |
| N,N-DMA     | 298.15        | 0.95235                            | 0.95232 [25] | 1.5565              | 1.55661 [25]  |  |
|             | 308.15        | 0.94391                            | 0.94393 [25] | 1.5520              | 1.55157 [25]  |  |
|             |               |                                    |              |                     |               |  |

<sup>a</sup> At 293.15 K

excess volumes,  $V^{E}$ , for the binary mixtures have been measured by V-shaped dilatometer at 308.15 K in the manner described elsewhere [26]. The temperature of water thermostat was controlled to  $\pm$  0.01 K by a mercury-in-toluene regulator. The change in the position of the liquid level in the capillary was noted with a cathetometer (OSAW, Ambala) that could read to  $\pm$  0.001 cm. The performance of dilatometer was checked by measuring the molar excess volume of the benzene + cyclohexane mixture at 298.15 K and these agreed to within the experimental limits with corresponding literature values [27]. The uncertainty in the measured  $V^{E}$  values was  $\pm$  1%.

#### Table 2

Measured excess molar volume for binary mixtures of butyl chloride (BC)(A) + aromatics hydrocarbon (B) at 308.15 K.

|                                                  | X <sub>A</sub>                    | $V^E$                             | X <sub>A</sub> | $V^E$                             | X <sub>A</sub> | $V^E$                                       | X <sub>A</sub> | $V^E$           |
|--------------------------------------------------|-----------------------------------|-----------------------------------|----------------|-----------------------------------|----------------|---------------------------------------------|----------------|-----------------|
|                                                  |                                   | $\mathrm{cm}^3 \mathrm{mol}^{-1}$ |                | $\mathrm{cm}^3 \mathrm{mol}^{-1}$ |                | $\overline{\mathrm{cm}^3\mathrm{mol}^{-1}}$ |                | $cm^3 mol^{-1}$ |
|                                                  | 1,4-Dioxane $(A)$ + Aniline $(B)$ |                                   |                |                                   |                |                                             |                |                 |
|                                                  | 0.0527                            | -0.108                            | 0.2927         | -0.491                            | 0.5021         | -0.578                                      | 0.7520         | -0.396          |
|                                                  | 0.0950                            | -0.193                            | 0.3514         | -0.548                            | 0.5576         | -0.550                                      | 0.8013         | -0.332          |
|                                                  | 0.1437                            | -0.285                            | 0.3895         | -0.567                            | 0.6059         | -0.530                                      | 0.8316         | -0.295          |
|                                                  | 0.1905                            | -0.360                            | 0.4392         | -0.574                            | 0.6491         | -0.495                                      | 0.9027         | -0.186          |
|                                                  | 0.2412                            | -0.434                            | 0.4617         | -0.574                            | 0.6988         | -0.45                                       |                |                 |
|                                                  |                                   |                                   |                |                                   |                |                                             |                |                 |
|                                                  | 1,4-Diox                          | ane(A) + N,                       | N-Dimeti       | iylanılıne (B                     | )              |                                             |                |                 |
|                                                  | 0.0509                            | 0.015                             | 0.3009         | 0.105                             | 0.5605         | 0.163                                       | 0.7951         | 0.120           |
|                                                  | 0.1121                            | 0.035                             | 0.3429         | 0.120                             | 0.5902         | 0.163                                       | 0.8532         | 0.095           |
|                                                  | 0.1551                            | 0.050                             | 0.3982         | 0.140                             | 0.6421         | 0.160                                       | 0.8977         | 0.070           |
|                                                  | 0.2082                            | 0.070                             | 0.4575         | 0.155                             | 0.6954         | 0.150                                       |                |                 |
|                                                  | 0.2603                            | 0.090                             | 0.4991         | 0.160                             | 0.7526         | 0.135                                       |                |                 |
|                                                  | 1 4-Diov                          | $ane(A) \pm Fo$                   | rmamide        | (R)                               |                |                                             |                |                 |
|                                                  | 0.0491                            | -0.088                            | 0 3124         | -0376                             | 0 5422         | -0.425                                      | 0 7929         | -0.278          |
|                                                  | 0.1123                            | -0.180                            | 0.3533         | -0.395                            | 0.5891         | -0.418                                      | 0.8603         | -0.210          |
|                                                  | 0.1611                            | -0.242                            | 0.3035         | -0.412                            | 0.6235         | -0.410                                      | 0.8931         | -0.164          |
|                                                  | 0 2 1 5 1                         | -0.302                            | 0 4597         | -0.425                            | 0.6709         | -0.381                                      | 0.0001         | 01101           |
|                                                  | 0.2702                            | -0.350                            | 0.5059         | -0.427                            | 0.7356         | -0.338                                      |                |                 |
|                                                  |                                   |                                   |                |                                   |                |                                             |                |                 |
| 1,4-Dioxane $(A) + N,N$ -Dimethylformamide $(B)$ |                                   |                                   |                |                                   |                |                                             |                |                 |
|                                                  | 0.0412                            | -0.010                            | 0.3149         | 0.010                             | 0.5026         | 0.037                                       | 0.8119         | 0.029           |
|                                                  | 0.1029                            | -0.018                            | 0.3421         | 0.016                             | 0.5569         | 0.042                                       | 0.8752         | 0.023           |
|                                                  | 0.1592                            | -0.015                            | 0.3701         | 0.021                             | 0.6209         | 0.040                                       | 0.9389         | 0.010           |
|                                                  | 0.2201                            | -0.007                            | 0.4215         | 0.028                             | 0.6751         | 0.042                                       |                |                 |
|                                                  | 0.2715                            | 0.003                             | 0.4628         | 0.032                             | 0.7595         | 0.036                                       |                |                 |
| - 1                                              |                                   |                                   |                |                                   |                |                                             |                |                 |



**Fig. 1.** Molar excess volume  $(V^E)$  of 1,4-dioxane(A) + B mixtures as a function of mole fraction  $(x_A)$  of 1,4-dioxane at 308.15 K; symbols represent experimental value and lines represent value calculated from Eq. (1).

#### 3. Results

The measured  $V^{E}$  data for the present binary mixtures at 308.15 K were recorded in Table 2 and shown graphically in Fig. 1 and were fitted to the following Redlich and Kister equation

$$V^{E} / \text{cm}^{3} \text{mol}^{-1} = x_{A} (1 - x_{A}) \left[ \sum_{n=0}^{3} V_{n} (2x_{A} - 1)^{n} \right]$$
 (1)

where  $V_n$  are the adjustable parameters, and  $x_A$  is the mole fraction of 1,4-dioxane (A) in (A + B) mixture. These parameters were evaluated by fitting  $V^E$  data to Eq. (1) by the least squares method and recorded in Table 3 with the standard deviations of  $V^E$ , ( $\sigma(V^E)$ ), given as

$$\sigma\left(V^{E}\right)/\operatorname{cm}^{3}\operatorname{mol}^{-1} = \left\{ \left[ \sum \left(V^{E}_{\operatorname{expt.}} - V^{E}_{\operatorname{calcd Eq.}(1)}\right) \right] / (m-n) \right\}^{1/2}$$
(2)

where *m* is the number of experimental values, and *n* is the number of adjustable parameters in Eq. (2). The choice of *n* to have 0–3 values was dictated by the consideration that the maximum deviation  $\sigma_m$  ( $V^E$ ) of  $V^E$  (as calculated from Eq. (1) from the corresponding experimental  $V^E$  values) satisfied the relation  $\sigma_m(V^E) \leq 2\sigma(V^E)$ .

### 4. Discussion

We are unaware of any  $V^E$  data of the present mixtures with which to compare our results. It is, however, interesting to note that while  $V^E$  data for 1,4-dioxane (A) + aniline or formamide (B) are negative, large and almost symmetrical about  $x_A = 0.5$ , those of 1,4-dioxane (A) + DMA or DMF (B) are small and positive,  $V^E$  data for 1,4-dioxane + DMF mixtures also change sign with  $x_A$ ; with  $V^E_{max} = 0.041 \text{ cm}^3 \text{mol}^{-1}$  at  $x_A = 0.6$  and  $V^E_{min} = -0.017 \text{ cm}^3 \text{mol}^{-1}$  at  $x_A = 0.11$ . For an equimolar A + B mixture,  $V^E$  follow the sequence: aniline < formamide < DMF < DMA (Fig. 1).

The  $V^{E}$  data for 1,4-dioxane + aniline or DMA mixtures suggest that either one or both the hydrogen atoms of the NH<sub>2</sub> group of aniline

Table 3 Adjustable parameters of Eq. (1) and standard deviation ( $\sigma$ ).

| System                        | V <sub>0</sub> | V <sub>1</sub> | $V_2$   | $V_3$  | $\sigma \cdot 10^3$ |
|-------------------------------|----------------|----------------|---------|--------|---------------------|
| 1,4-Dioxane (A) + Aniline (B) | -2.2963        | 0.3979         | 0.1897  | -0.495 | 3.3                 |
| 1,4-Dioxane (A) +             | 0.6327         | 0.2582         | -0.1353 | 0.0121 | 1.7                 |
| N,N-Dimethylaniline (B)       |                |                |         |        |                     |
| 1,4-Dioxane $(A) +$           | -1.7262        | 0.0052         | -0.0872 | 0.0915 | 3.4                 |
| Formamide (B)                 |                |                |         |        |                     |
| 1,4-Dioxane $(A) +$           | 0.1458         | 0.1693         | -0.2153 | 0.118  | 1.2                 |
| N,N-Dimethylformamide (B)     |                |                |         |        |                     |

Download English Version:

https://daneshyari.com/en/article/5412986

Download Persian Version:

https://daneshyari.com/article/5412986

Daneshyari.com