

www.elsevier.com/locate/molliq

Viscous synergy and isentropic compressibility of some monoalkanols and cyclic ethers in water at 298.15 K

Mahendra Nath Roy*, Biswajit Sinha

Department of Chemistry, University of North Bengal, Darjeeling-734013, India

Received 6 April 2006; accepted 10 July 2006 Available online 21 November 2006

Abstract

Pure or aqueous alcohols are most widely used in industry, including in the manufacture of pharmaceuticals and cosmetic products. However, in the case of insolubility of some solutes in water, non-water solvents may be used possessing the common characteristic of being soluble in water; as a result, such solvents may be used with different purposes, such as increasing water solubility, or modifying the viscosity or absorption of the dissolved substance. Also, the nature of intermolecular forces between the solvents brings a marked effect on the thermodynamic properties such as density, viscosity and surface tension etc. The present study investigates viscous synergy and isentropic compressibility in the systems comprising some monoalkanols (C_1 – C_4) and cyclic ethers (1,4-dioxane and tetrahydrofuran) in the proportion w/w=1:1, in water at different concentrations (w/w) at 298.15 K to determine the proportion of monoalkanol+cyclic ether+water, at which maximum synergy occurs. The density and viscosity data have been analyzed using the equation developed by Kaletunc–Gencer and Peleg. Also a correlation between the density and viscosity increment for all the systems has been attempted. The ratio between maximum viscosity reached by the mixtures and pure state viscosity is expressed by the enhancement index defined as $E_n = \eta_{\text{max}}/\eta_0$. © 2006 Elsevier B.V. All rights reserved.

Keywords: Viscous synergy; Isentropic compressibility; 1,4-dioxane; Tetrahydrofuran

1. Introduction

The increasing use of cyclic ether, monoalkanols and their aqueous mixtures in many industrial processes such as pharmaceutical and cosmetics has greatly stimulated the need for extensive information on their properties. 1,4-dioxane (DO), tetrahydrofuran (THF) and their aqueous mixtures are very important solvents that are widely used in various industries. They figure prominently in the high-energy battery technology and have also found application in organic synthesis as manifested from the physico-chemical studies in these media [1–7]. The thermodynamic properties of various alkanols have been studied in numerous solvents [8–14]. In our systematic study of the thermodynamic properties, we have reported densities, viscosities and speeds of sound of different solvents and their mixtures in the previous papers [15–22] from our

Table 1 Comparison of density, $\rho \times 10^3/\text{kg m}^{-3}$ and viscosity, η of the pure liquids with literature data at 298.15 K

Solvent	$\rho \times 10^3/\text{kg}$	m^{-3}	η/mPa s		
	Expt.	Lit.	Expt.	Lit.	
Water	0.9971	0.9971 [25]	0.8904	0.8904 [25]	
Tetrahydrofuran	0.8807	0.8807 [15]	0.4630	0.4630 [15]	
1,4-Dioxane	1.0305	1.0305 [26]	1.2000	1.2000 [26]	
Methanol	0.7869	0.7869 [12]	0.5470	0.5470 [12]	
Ethanol	0.7850	0.7850 [12]	1.0760	1.0760 [12]	
1-Propanol	0.8025	0.8025 [12]	1.9460	1.9460 [12]	
2-Propanol	0.7825	0.7825 [12]	2.0314	2.0314 [12]	
1-Butanol	0.8060	0.8060 [12]	2.5420	2.5420 [12]	
2-Butanol	0.8035	0.8035 [12]	2.8230	2.8230 [12]	

laboratory. In this paper we extend our studies to the aqueous mixtures of 1,4-dioxane (DO) and tetrahydrofuran (THF) with some monoalkanols where water is represented as A, cyclic ether (DO or THF) is represented as B, and monoalkanol, represented as C. The monoalkanols include methanol (MeOH),

^{*} Corresponding author. Fax: +91 353 2581546.

E-mail address: mahendraroy2002@yahoo.co.in (M.N. Roy).

Table 2 Comparison of the theoretical and experimental viscosities for the indicated water-soluble mixtures of tetrahydrofuran (THF), 1,4-dioxane (DO) and different monoalkanols as a function of (w/w) concentration

Mass % of H ₂ O	Pure THF		THF+MeOH	THF+MeOH $(w/w=1:1)$		THF+EtOH (w/w=1:1)		THF+1-PrOH (w/w=1:1)	
	η _{mix} /mPa s	η _{exp} /mPa s	η _{mix} /mPa s	η _{exp} /mPa s	η _{mix} /mPa s	η _{exp} /mPa s	η _{mix} /mPa s	η _{exp} /mPa s	
0	0.4630	0.4630	0.5050	0.4761	0.7695	0.6728	1.2045	0.7603	
10	0.5057	0.6564	0.5435	0.7377	0.7816	1.0009	1.1731	1.1857	
20	0.5485	0.9237	0.5821	1.0404	0.7937	1.3311	1.1417	1.5186	
30	0.5912	1.2238	0.6206	1.3114	0.8058	1.6325	1.1103	1.8789	
35	0.6126	1.3994	0.6399	1.4428	0.8118	1.7806	1.0946	1.9117	
40	0.6340	1.4904	0.6596	1.5381	0.8179	1.8862	1.0789	2.0208	
45	0.6553	1.5817	0.6784	1.6474	0.8239	1.9729	1.0632	2.0917	
50	0.6767	1.6776	0.6977	1.7686	0.8299	2.0332	1.0475	2.1581	
55	0.6981	1.7013	0.7169	1.7698	0.8360	2.0907	1.0317	2.2296	
60	0.7199	1.7321	0.7362	1.7852	0.8420	2.0152	1.0160	2.1679	
70	0.7622	1.6798	0.7748	1.7787	0.8541	1.8765	0.9846	2.0124	
80	0.8049	1.4900	0.8133	1.5651	0.8662	1.6345	0.9532	1.6478	
90	0.8477	1.2015	0.8519	1.2485	0.8783	1.2372	0.9218	1.2592	
100	0.8904	0.8904	0.8904	0.8904	0.8904	0.8904	0.8904	0.8904	
Mass % of H ₂ O			THF+2-PrOH (w/w=1:1)		THF+1-BuOH (w/w=1:1)		$\overline{\text{THF}+2\text{-BuOH }(w/w=1:1)}$		
			$\eta_{ m mix}/{ m mPa}$ s	$\eta_{\rm exp}$ /mPa s	$\eta_{ m mix}/{ m mPa}$ s	$\eta_{\rm exp}/{\rm mPa}$ s	$\eta_{ m mix}/{ m mPa}$ s	$\eta_{\rm exp}$ /mPa s	
0			1.2472	0.6917	1.5025	0.8514	1.6430	0.8021	
10			1.2115	1.1171	1.4413	1.2586	1.5677	1.2436	
20			1.1758	1.4952	1.3801	1.6069	1.4925	1.6700	
30			1.1402	1.8652	1.3189	1.9206			
35			1.1223	2.0303	1.2883	2.1404			
40			1.1045	2.1759	1.2577	2.1910			
45			1.0866	2.2524					
50			1.0688	2.2905					
55			1.0509	2.3370					
60			1.0331	2.2876					
70			0.9974	2.1204			1.1162	2.0884	
80			0.9618	1.7880			1.0409	1.7427	
90			0.9261	1.3276	0.9516	1.3354	0.9657	1.3178	
100			0.8904	0.8904	0.8904	0.8904	0.8904	0.8904	
Mass % of H ₂ O	Pure DO		DO+MeOH (1	DO+MeOH (w/w=1:1)		DO+EtOH $(w/w=1:1)$		DO + 1 - PrOH(w/w = 1:1)	
_	$\eta_{\rm mix}/{\rm mPa}$ s	$\eta_{\rm exp}$ /mPa s	$\eta_{\rm mix}/{ m mPa}$ s	$\eta_{\rm exp}/{\rm mPa}$ s	$\eta_{\rm mix}/{ m mPa}$ s	η _{exp} /mPa s	$\eta_{\rm mix}/{ m mPa}$ s	η _{exp} /mPa s	
0	1.2000	1.2000	0.8735	0.6148	1.1380	0.9243	1.5730	1.1309	
10	1.1690	1.4419	0.8752	0.9069	1.1132	1.3182	1.5047	1.6458	
20	1.1381	1.7859	0.8769	1.2053	1.0885	1.7779	1.4365	2.0743	
30	1.1071	1.9762	0.8786	1.4429	1.0637	2.0719	1.3682	2.3439	
35	1.0916	2.0230	0.8794	1.5471	1.0513	2.1364	1.3341	2.3963	
40	1.0762	1.9871	0.8803	1.6171	1.0389	2.1975	1.2999	2.4199	
45	1.0607	1.9577	0.8811	1.6712	1.0266	2.2388	1.2658	2.4286	
50	1.0452	1.9139	0.8819	1.7057	1.0142	2.2636	1.2317	2.4468	
55	1.0297	1.8346	0.8828	1.6971	1.0018	2.2029	1.1976	2.3527	
60	1.0142	1.6970	0.8836	1.6349	0.9894	2.1110	1.1634	2.2553	
70	0.9833	1.5181	0.8853	1.5233	0.9647	1.8947	1.0952	2.0141	
80	0.9523	1.2967	0.8870	1.3352	0.9399	1.5610	1.0269	1.6868	
90	0.9214	1.0949	0.8887	1.1766	0.9153	1.2005	0.9587	1.2584	
100	0.8904	0.8904	0.8904	0.8904	0.8904	0.8904	0.8904	0.8904	
Mass % of H ₂ O	DO+2-PrOH ($w/w=1:1$)		DO+1-BuOH ($w/w=1:1$)		Do $+2$ -BuOH ($w/w=1:1$)		DO+THF ($w/w=1:1$)		
0	1.6157	1.0778	1.8710	1.2715	2.0115	1.1333	0.8315	0.6797	
10	1.5432	1.6710	1.7729	1.7840	1.8994	1.8135	0.8374	0.9285	
20	1.4706	2.2000	1.6749	2.1742	1.7873	3.0482	0.8433	1.2432	
	1.3981	2.5134	1.5768	2.2031			0.8492	1.5476	
30	1.5701						0.0521		
	1.3618	2.5920	1.5278	2.2643			0.8521	1.6815	
30		2.5920 2.6547	1.5278 1.4788	2.2643 2.4169			0.8521	1.7972	
30 35	1.3618								
30 35 40	1.3618 1.3256	2.6547					0.8551	1.7972	

Download English Version:

https://daneshyari.com/en/article/5413497

Download Persian Version:

https://daneshyari.com/article/5413497

<u>Daneshyari.com</u>