
A proposed synthesis method for Application-Specific Instruction
Set Processors

Péter Horváth n, Gábor Hosszú, Ferenc Kovács
Department of Electron Devices, Budapest University of Technology and Economics, Magyar tudósok körútja 2, H-1117 Budapest, Hungary

a r t i c l e i n f o

Article history:
Received 13 May 2014
Received in revised form
13 December 2014
Accepted 2 January 2015
Available online 3 February 2015

Keywords:
Application-Specific Instruction Set
Processor
ASIP
Architecture description language
ADL
System on Chip
SoC
RTL processor design

a b s t r a c t

Due to the rapid technology advancement in integrated circuit era, the need for the high computation
performance together with increasing complexity and manufacturing costs has raised the demand for
high-performance configurable designs; therefore, the Application-Specific Instruction Set Processors
(ASIPs) are widely used in SoC design. The automated generation of software tools for ASIPs is a
commonly used technique, but the automated hardware model generation is less frequently applied in
terms of final RTL implementations. Contrary to this, the final register-transfer level models are usually
created, at least partly, manually. This paper presents a novel approach for automated hardware model
generation for ASIPs. The new solution is based on a novel abstract ASIP model and a modeling language
(Algorithmic Microarchitecture Description Language, AMDL) optimized for this architecture model. The
proposed AMDL-based pre-synthesis method is based on a set of pre-defined VHDL implementation
schemes, which ensure the qualities of the automatically generated register-transfer level models in
terms of resource requirement and operation frequency. The design framework implementing the
algorithms required by the synthesis method is also presented.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Today's increasingly developing manufacturing technology makes it
possible to build complete data processing systems on a single chip
including digital and analog building blocks with on-chip memories
and communication. These complex systems called System on Chips
(SoCs) comprise various computational submodules called Application-
Specific Integrated Circuits (ASICs) with a well-defined functionality,
which cannot bemodified after manufacturing. ASICs provide favorable
energy-efficiency and high computation performance since they are
optimized for a specific function. However, besides the high computa-
tion capacity, the reusability and flexibility as design constraints have
gained significant importance because of the extremely high manu-
facturing costs.

There are two major ways to ensure flexibility in SoCs. The first
approach is based on embedded reconfigurable logic devices, such as
Field Programmable Gate Arrays (FPGAs) and Complex Programma-
ble Logic Devices (CPLDs), which make it possible to implement
arbitrary digital functionality and can be reconfigured “on the field”
after manufacturing. The other solution is the usage of general
purpose devices operating according to a stored program. These

devices are the well-known microprocessors whose functionality can
be changed with a simple software update.

Both solutions provide flexibility on the cost of limited compu-
tation capacity. In case of general purpose microprocessors, the
additional memory accesses and other administrative operations
necessitated by the programmable nature cause a significant
penalty in computation performance. In case of programmable
logic devices the reconfigurability is achieved by generic logic cells
and a high amount of programmable interconnection and wiring
resources, which cause high path delays that result in a relatively
low operation frequency and high power consumption.

The concept of Application-Specific Instruction Set Processors
(ASIPs) is a promising result of the trade-off exploration between
flexibility and computation performance [1]. ASIPs are microproces-
sors with a unique instruction set optimized for a specific application
domain. Since they execute a program, they can quickly adapt to the
varying functional requirements. At the same time they have
instructions and hardware resources optimized for the target appli-
cation; therefore, they provide a higher computational performance
than the general purpose microprocessors [2,3].

Due to the rigorous time-to-market requirements, reducing the
time-consumption of ASIP design is essential. The primary design
tools of ASIPs are the Architecture Description Languages (ADLs),
which are specific modeling tools for instruction sets and micro-
architecture. The design frameworks based on these formal language

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

http://dx.doi.org/10.1016/j.mejo.2015.01.001
0026-2692/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ36 1 463 3072; fax: þ36 1 463 2973.
E-mail address: horvathp@eet.bme.hu (P. Horváth).

Microelectronics Journal 46 (2015) 237–247

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2015.01.001
http://dx.doi.org/10.1016/j.mejo.2015.01.001
http://dx.doi.org/10.1016/j.mejo.2015.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.01.001&domain=pdf
mailto:horvathp@eet.bme.hu
http://dx.doi.org/10.1016/j.mejo.2015.01.001


models mainly concentrate on the software parts of the micropro-
cessor systems, namely the instruction set simulator, assembler,
compiler, and debugger generation. The automated hardware synth-
esis plays a secondary role since the complex datapaths including
internal data storage subsystems and interdependent pipeline stages
characteristic to the instruction set processors require a high level of
optimization, which cannot be achieved by contemporary Computer-
Aided Design (CAD) tools. Therefore, the ADL-based design frame-
works, even if they are able to generate a hardware model, often
compromise or neglect the quality of the final register-transfer level
(RTL) implementation [4].

This paper presents a novel approach for ASIP modeling with
great emphasis on automated hardware generation. The main idea
of our solution is similar to High-Level Synthesis (HLS) [5–7],
where the design is described as an algorithm, then a High-Level
Synthesis procedure generates an RTL model. With lowering the
abstraction of the formal specification while keeping the readable
algorithmic design style, our approach makes it possible to achieve
a high level of optimization and a reduced development time.

The basis of the presented approach is a new abstract model of
ASIP architectures and a mixed algorithm and RTL description
language called Algorithmic Microarchitecture Description Lan-
guage (AMDL) optimized for the proposed abstract architecture
model. The algorithmic language environment of AMDL combined
with the detailed description style characteristic to RTL ensures
the rapid architecture implementation and the comprehensive
control over the microarchitectural details as well. The initial
formal language model comprises a lot of structural information,
which makes it possible to generate an optimized, technology-
independent RTL output, which can be transformed into a gate
level model using the existing logic synthesis tools.

This paper is organized as follows: Section 2 provides a brief
overview of SoC implementation solutions, ASIP modeling meth-
odologies, and their drawbacks in terms of hardware generation.
Section 3 presents a proposed novel architecture model of ASIPs
and Section 4 describes a proposed synthesis approach and
modeling language for this architecture model. Section 5 gives
an overview of the design framework implementing the proposed
synthesis method. Section 6 presents experimental results and
Section 7 draws conclusions.

2. Background

2.1. System on Chip implementations

Numerous heterogeneous architectures can be created with the
combination of application-specific functional units, general pur-
pose microprocessors, and FPGA resources [8–11]. The different
solutions enable a trade-off between flexibility and computation
performance.

A general purpose microprocessor combined with an application-
specific functional unit as an accelerator is used when certain
computational tasks need a significant speed up. The accelerator
may be loosely or tightly coupled to the microprocessor depending
on the application. Both solutions define an interface between the
two major components of the system, which may result in a
bottleneck in terms of computation performance. Furthermore, if
the accelerator is implemented in ASIC, both its functionality and its
interface to the microprocessor are fixed.

A more flexible solution can be achieved with the application of
FPGA fabric for implementing the accelerator functionality. In this
case both main components provide post-fabrication flexibility but
the fixed interface between the microprocessor and the program-
mable logic may prohibit comprehensive optimizations.

FPGA vendors usually provide another solution for combining
instruction set processors with reconfigurable hardware. The soft-
core processors implemented by FPGA resources provide a limited
configurability in terms of instruction set, internal memories and
pipeline implementation. In this case, additional accelerators can
also be placed beside the microprocessor using the reconfigurable
FPGA fabric. The special purpose high performance resources of
the FPGAs, such as block memories, DSP slices, and high speed
communication interfaces can be used either by the microproces-
sor or the accelerator. This solution is favorable in terms of
flexibility but the interface issue mentioned above still exists and
the reconfigurable nature of the hardware results in a limited
operation frequency and poor energy efficiency.

2.2. Application-Specific Instruction Set Processors

ASIPs represent special types of stored-program microproces-
sors, whose instruction set is optimized for a certain application or
application domain. This approach is similar to the processor–
accelerator system but the two main parts are not separated. There
is no well-defined interface between the application-specific
functionality and the instruction set processor; therefore the
drawback caused by their interface is completely eliminated.

There are two main approaches in ASIP design methodologies.
Both of them are based on a low-level profiling of the target
application. In the first case called instruction set customization,
the profiling data are used to determine a subset of a general
instruction-set, which the application does not use. By neglecting
the unused instructions in the synthesis step the resource require-
ment and hence the cost and the area can be decreased. In the
other approach called microarchitecture customization also
known as Instruction Set Extension (ISE) the profiling data is used
to determine complex functionalities the application frequently
uses. Then this functionality is synthesized as a special instruction
(or as a set of special instructions) implemented in highly
optimized functional units called Application-Specific Custom Unit
(ASCU) integrated into the processor's datapath. This solution
significantly improves the computation performance.

The ASIPs incorporate the flexibility of programmable solutions
and the high computational performance of ASICs. Due to the
significant demand for flexibility, the rapidly developing wireless
communication is one of the most important application fields of
ASIPs. [12] and [13] present specific digital signal processing (DSP)
architectures for decoding and demapper implementations, which
can easily adapt to varying network and communication stan-
dards. [14–18] utilize the favorable computation performance of
ASIPs, which can be used for efficient implementation of signal
processing algorithms in multimedia applications, such as Fast
Fourier Transform (FFT), Discrete Cosine Transform (DCT), Retinex-
filtering, QR Decomposition (QRD), Singular Value Decomposition
(SVD) and Motion Estimation (ME). [19] presents another applica-
tion field of ASIPs, namely encryption standards, which also
demand a high computation performance. [20] presents a high-
throughput ASIP with specialized Single Instruction Multiple Data
(SIMD) instructions frequently used in biological sequence align-
ment algorithms. All the above mentioned works describe typical
ASIP architectures in a sense that they include application-specific
pipelines, which operate according to a stored program.

2.3. Algorithmic modeling of ASIPs

In SoC design industry, a widely used method for speeding up a
design process is the high abstraction level design entry combined
with automated design steps. In electronic system design the so-
called High-Level Synthesis (HLS) [21–23] is a typical implementa-
tion of this concept. An HLS algorithm is used to transform an

P. Horváth et al. / Microelectronics Journal 46 (2015) 237–247238



Download English Version:

https://daneshyari.com/en/article/541350

Download Persian Version:

https://daneshyari.com/article/541350

Daneshyari.com

https://daneshyari.com/en/article/541350
https://daneshyari.com/article/541350
https://daneshyari.com

