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Abstract

In a series of papers we have introduced a field theoretical approach to describe the liquid state. The formalism introduces a simple Hamiltonian
which includes the ideal gas free energy and the standard interaction potential between particles coupling the fields. In this paper, we discuss the role
and the importance of the ideal term in this formalism. We compare our approach to the standard liquid state theory and another approach based on a
field description, the density functional theory where an identical functional appears. The comparison shows that field theory sheds new light on the
role of the ideal entropy an aspect which is traditionally discarded in favor of a viewpoint focusing on the interaction potential.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Field theory is traditionally used as a heuristic tool and
generally considered as a merely qualitative approach. This is due
to the fact that most approaches of this kind are based on phe-
nomenological Hamiltonians. The resulting approaches are rather
flexible in that they can be used for instance to describe liquid–gas
interfaces, polymers or the soft matter in general [1–3]. However,
its use in the description of critical phenomena for instance, also
shows that it is a robust and powerful tool [4].

In a series of papers [5–9], we have introduced a field theory
(FT) to describe the liquid state. The description is based on
fields representing the density of the particles. Using these
fields, the functional integral, from which one can calculate the
partition function, is written in terms of a Hamiltonian. The
Hamiltonian includes two contributions, a local functional
related to the ideal gas and a non-local quadratic term which
includes the two body interaction potential. In this framework
the interaction potential describes coupling of the fields rather
than interaction between the particles. This approach has been
successfully applied to describe ionic solutions in the bulk [5]

and at interfaces [7–9] and systems interacting with Yukawa
potentials [6]. In [10] we show that this Hamiltonian cor-
responds to a description of the liquid state equivalent to the
standard liquid state theory [11].Well known exact expressions
can be derived within this formalism as well as new relations
specific to this formalism [12].

The aim of this paper is to discuss important characteristic
features of the field theoretical approach — in particular, the
core of this formalism which is the ideal gas contribution to the
Hamiltonian. In this perspective, we discuss the role of this term
in the calculation of the functional integral. It is shown that this
term has an important non-trivial role in the theory and that it
accounts for the ideal gas contribution to the free energy. In the
standard liquid state theory the focus is usually on non-local
properties such as the interaction potential or the correlation
functions. One consequence of the traditional viewpoint is to
give the feeling that once we isolate the ideal gas contribution,
we no longer need to discuss the ideal gas properties. In the
present paper we show that combinatorics related with the ideal
gas properties is present in the field theory at all stages of the
calculation just as much as the interactions are. We discuss the
physical implications with simple intuitive arguments.

The paper is organized as follows. We first derive an ex-
pression of the chemical potential which is a direct consequence
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of the Hamiltonian. Then we discuss the FT in view of the
traditional liquid state theory and one specific approach which is
the Density Functional Theory (DFT) [13–16]. This approach is
also based on a density functional and often involves a term
which is identical to the ideal term in our Hamiltonian. We then
describe the role of the ideal gas functional in FT in a pertur-
bation expansion. First, we give the expansion theory from the
viewpoint of the standard loop expansion of the FT. Second, we
provide examples where the physical implications of the ideal
gas Hamiltonian are evident.

2. Field theory

2.1. Functional integral

For a one component liquid, with pair interactions, we con-
sider a FT where we fix the external parameters of chemical
potential μ and temperature T and Ve stands for the external
potential. The generating functional for the theory is written in
terms of the generating field J

N½l; T ; J � ¼
Z

Dq expf−bH½l; T ; q� þ
Z

ðbV e þ J Þqg ð1Þ

where Dq is the measure, on a discretized lattice, of lattice
spacing ρ. The Hamiltonian H½l; T ; q� ¼ Hid½l; T ; q� þ Hv

½T ; q� has two contributions. The first is related to the ideal gas

bHid½l; T ; q� ¼
XV=a3
i

qðiÞa3 lnðqðiÞK3Þ−1−bl� � ð2Þ

¼
XV=a3
i

qðiÞa3 lnðqðiÞ=q̄Þ−1½ � ð3Þ

where β is the inverse temperature, Λ the de Broglie wavelength
and in the second line we have introduced the notation ρ̄ =(1 /
Λ3) exp (βμ), which is simply the density of an ideal gas of the
same given temperature and chemical potential. The second
contribution to the Hamiltonian is related to the interactions

bHv½T ; q� ¼ 1
2

XV=a3
ipj

qðiÞa3ðbvði; jÞÞqðjÞa3 ð4Þ

where v(i, j) is the pair potential between sites i and j.
The thermodynamic grand partition function of the system

Ξ̂=Ξ [μ,T;0] is then simply the generating functional for J=0.
The density correlation functions are obtained differentiating
the generating functional

bqði1Þ N qðinÞN ¼ dnN½l; T ; J �
dJði1Þ N dJðinÞ jJ¼0

ð5Þ

2.2. Exact relation in field theory

If we express the partition function as a functional integral,
the Dyson relation [4,17] follows as a direct consequence of ρ
being the dummy variable. In the quantum field theory it is

known as the equation of movement. In the transformation
ρ→ρ+Δρ of the stochastic variable, where Δρ is a given
function the partition function remains unchanged. Starting
from expression (1) and taking J=0, we have at each site i the
general expression

bb
dH
dqðiÞNþ bV eðiÞ ¼ 0: ð6Þ

Using the Hamiltonian given by Eqs. (2) and (4), at a given
lattice site i, the relation above becomes [8]

blnqðiÞK3Nþ
X
jpi

bvði; jÞbqjNa3 þ bV eðiÞ ¼ bl: ð7Þ

This relation shows that the chemical potential is the sum of
the external potential, the derivative of the ideal gas free energy
with respect to the density at a given point and the sum over all
other points of the interaction potential with the weighting of the
density.

This expression is similar to the traditional expression of the
one-particle density ρ̃ (i) (i.e. bp(i)N in FT) in the liquid state
theory [18–20] which can be written

lnðfqðiÞK3Þ−cð1ÞðT ; ½q�; iÞ þ bV eðiÞ ¼ bl ð8Þ

where c(1)(T,[ρ];i) is the single-particle direct correlation
function [11,18,19]. And it can also be compared with another
expression of the chemical potential [21] based on a charging
process of the interaction potential

vðn; nÞ ¼
X
n1

nvðn; n1Þ þ
X

n1;n2pn

vðn1; n2Þ ð9Þ

where the potential of all particles with particle n is prog-
ressively turned on by increasing ξ from 0 to 1. We thus have

lnðfqðiÞK3Þ þfqðiÞa3
Z 1

0
dn

X
j
bvði; jÞgð2Þði; j; nÞþbV eðiÞ

¼ bl

ð10Þ
where g(2) (i, j; ξ) is the pair distribution function [11] as a
function of the charging parameter ξ.

If we compare the first two expressions of the chemical
potentia1, Eqs. (7) and (8), we have that the two quantities

blnqðiÞK3Nþ
X
jpi

bvði; jÞbqjNa3 and

lnðfqðiÞK3Þ−cð1ÞðT ; ½q�; iÞ
ð11Þ

must be identical. The comparison shows that it would be
deceptive to identify logarithmic terms in both theories. In the
case of the FT, the term which involves explicitly the potential is
simple, it is just multiplied and summed with the average
density. The complexity of the system sits in the average of the
logarithmic term, where the average has to be calculated with
the full Hamiltonian which includes the interactions. In contrast

49D. di Caprio, J. Stafiej / Journal of Molecular Liquids 131–132 (2007) 48–52



Download	English	Version:

https://daneshyari.com/en/article/5413599

Download	Persian	Version:

https://daneshyari.com/article/5413599

Daneshyari.com

https://daneshyari.com/en/article/5413599
https://daneshyari.com/article/5413599
https://daneshyari.com/

