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a b s t r a c t

Line position and line intensity analyses of the high-resolution spectrum of the HDO isotopic species of
the water molecule are performed with an extended version of the Bending-Rotation approach up to the
(010) state and J ¼ 22. The line position analysis involves 3992 microwave, far infrared and infrared
lines, and 421 experimental energy levels which were reproduced with a 1.1 unitless standard deviation.
The data set considered in the line intensity analysis consists of 1405 infrared absorpon lines and 4 Stark
coefficients fitted with a 1.2 unitless standard deviation. The results of both analyses are compared with
previous investigations and are used to build a spectroscopic database which is compared with other
available databases and should be useful for interpreting measurements carried out with the Infrared
Atmospheric Sounding Interferometer (IASI).

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

The HDO molecule is important in many areas and has been
used, for instance, to study the atmosphere of terrestrial planets.
Measurements of the ratio dD ¼ ½HDO�=½H2O� were thus performed
in the atmosphere of Venus [1] and Mars [2]. In the case of the
earth atmosphere, dD is measured using satellite observations
and contains information about many processes such as the trans-
port experienced by the water mass [3,4] or global climatological
behavior [5]. HDO is also interesting from the spectroscopic point
of view as it displays an anomalous centrifugal distortion, evi-
denced a long time ago [6], similar to that of the normal species
H2O [7]. A model developed to treat the anomalous distortion in
HDO should account for the fact that it lacks a two-fold axis of
symmetry.

A new treatment aimed at the calculation of the rovibrational
energy of the HDO molecule and accounting for anomalous cen-
trifugal distortion effects has been developed. It is a modified ver-
sion of the Bending-Rotation approach initially developed for the
normal species [8–12] and also relies on an effective Hamiltonian
in which the large amplitude bending m2 mode and the overall
rotation of the molecule are treated simultaneously. Due to the
lack of a two-fold axis of symmetry, this effective Hamiltonian con-
tains terms arising from a non-diagonal component of the inertia

tensor and from the Coriolis coupling between the large amplitude
bending m2 mode and the overall rotation of the molecule.

This new treatment has been used to perform a line position
analysis of a large body of microwave [6,13,14], infrared [15–18],
hot water vapor [19,20], and experimental levels [18] data involv-
ing the ground and (010) states up to J ¼ 22. For these 4413 data, a
unitless standard deviation of 1.1 was achieved. A line intensity
analysis was also carried out and allowed us to reproduce the
strength of 1405 transitions [16,18] and 4 Stark coefficients [21]
with a unitless standard deviation of close to unity. The results of
the line position analysis are compared with those of a previous
investigation [22]. A Hitran-type spectroscopic database spanning
the 0–2000 cm�1 region is built and compared with HITRAN
2012 [23] and with the database built in Ref. [24] for planetological
purposes.

This paper has four remaining sections. The extended version of
the Bending-Rotation approach used for the rovibrational energy
and line strength calculations is presented in Section 2. Section 3
deals with the line position and line strength analyses, and with
the Hitran-type spectroscopic database. Section 4 is the discussion.

2. Theory

The Bending-Rotation approach [8–12] initially designed to
account for anomalous centrifugal distortion effects in the normal
species of water [7] is extended to molecules without a two-fold
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axis of symmetry as HDO. Like in Refs. [8–12], a bending-rotation
Hamiltonian is built starting from the exact Hamiltonian of a tri-
atomic molecule written using Radau’s coordinates [25,26].

2.1. The bending-rotation Hamiltonian

The exact quantum mechanical Hamiltonian of a triatomic
molecule is well known and can be found in Ref. [27] when the
usual bond angle and bond lengths internal coordinates are used
and in Ref. [28] when Radau coordinates are used. In this work,
we will use the exact Hamiltonian in Eq. [1] of Ref. [29], also writ-
ten with Radau coordinates, but where, instead of the Radau angu-
lar coordinate h, the bending coordinate t ¼ cos h is used. Just like
in Ref. [8], terms involving the conjugated momenta Pr1 and Pr2 are
ignored and the Radau stretching coordinates r1 and r2 are set to
their equilibrium value r1e and r2e. This yields the following
bending-rotation Hamiltonian:

Hb-r ¼ BePtð1� t2ÞPt þ VðtÞ þ Be
J2x

2ð1� tÞ þ
J2y
4
þ J2z
2ð1þ tÞ

" #

þ Ae Jyf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
; Ptg � fJx; Jzgffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

� �
; ð1Þ

where Pt is the momentum conjugated to t; Jx; Jy, and Jz are the
components of the rotational angular momentum in the
molecule-fixed axis system; f; g is the anticommutator; VðtÞ is the
potential energy function; and Be and Ae are two constants. (In Eq.
(1), the term in Ae accounts for a typographical error in Eq. (1) of
Ref. [29].) Be and Ae can be expressed in terms of r1e, r2e and the
atom masses:

Be ¼ 1
2

1
m1r21e

þ 1
m2r22e

� �
;

Ae ¼ 1
4

1
m2r22e

� 1
m1r21e

� �
: ð2Þ

Assuming atoms 1 and 2 are the deuterium and hydrogen atoms,
respectively, we obtain [30] r1e ¼ 0:9127 and r2e ¼ 0:9467 Å yield-
ing Be ¼ 28:722 and Ae ¼ 4:310 cm�1. As in the previous approaches
[8–12], the potential energy function in Eq. (1) is approximated by a
sixth order polynomial of t:

VðtÞ ¼
X6
i¼1

Vi ti; ð3Þ

where Vi, with 1 6 i 6 6, are six constants.
Comparing the bending-rotation Hamiltonian obtained in Ref.

[8] and the one obtained in this work shows that the lack of
two-fold axis of symmetry leads to an extra term, the term in Ae.
This term describes the Coriolis coupling between the overall rota-
tion and the m2 mode and includes a non-diagonal contribution
from the inertia tensor. This term gives rise to non-diagonal rota-
tional matrix elements only.

2.2. Vibrational and rovibrational matrix elements

Like in Ref. [9], a bending Hamiltonian is extracted from the
bending-rotation Hamiltonian in Eq. (1) retaining only those terms
having diagonal rotational matrix elements between two usual
symmetric top rotational functions jJ;Ki, where the quantum num-
ber M is ignored for simplicity. The t-dependent bending Hamilto-
nian takes the following expression:

Hb ¼ MfPtð1� t2ÞPt þ
X6
i¼1

Mi ti þ 1
2

Mþ
1þ t

þ M�
1� t

� �
; ð4Þ

where Mf ;Mþ;M�, and Mi, with 1 6 i 6 6, are 9 constants given by:

Mf ¼ Be;

Mþ ¼ BeK
2;

M� ¼ Be½JðJ þ 1Þ � K2�=2;
Mi ¼ Vi; with 1 6 i 6 6: ð5Þ

Matrix elements of the bending Hamiltonian in Eq. (4) between two
habn ðtÞ basis set bending functions, as defined in Eq. (4) of Ref. [9],
take the following expression:

hhabn jHbjhabn0 i ¼ Mfmðmþ 1Þdn;n0 þ
X6
i¼1

Mihhabn jtijhabn0 i; ð6Þ

where in agreement with Refs. [8,9], a and b are respectivelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�=Mf

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ=Mf

p
, and m ¼ nþ ðaþ bÞ=2. Evaluation of the

matrix elements of ti in Eq. (6) can either be performed, using
Table I of Ref. [9], when i 6 4, or Eq. (A.1) of the present paper for
any i-values. The matrix of the bending Hamiltonian Hb is setup
using Eq. (6) for 0 6 n;n0 6 nMax, where nMax is a positive integer.
Diagonalization yields bending energies and eigenfunctions which
will respectively be written:

Eðv2;MÞ;

jv2;Mi ¼
XnMax

n¼0
Cnðv2;MÞjhabn i;

8><
>: ð7Þ

where v2 is the vibrational quantum number for the bending m2
mode, M is a shorthand notation for the 9 constants defined in Eq.
(5), and Cnðv2;MÞ are real expansion coefficients.

Rovibrational matrix elements of the bending-rotation Hamilto-
nian are evaluated using the basis set rovibrational wavefunctions
in Eq. (11) of Ref. [9]. We are led to evaluate the matrix element:

hWv2 ;J;K;cjHb-rjWv 02 ;J;K
0 ;c0 i; ð8Þ

which is nonvanishing if DK ¼ jK � K 0j 6 2 and c0 ¼ cð�1ÞDK . When
DK ¼ 0 or 2, this matrix element can be retrieved from Eqs. (14) and
(15) of Ref. [9] replacing H0;Hþ and H� by BeJ

2
y=4;BeJ

2
z , and BeJ

2
x ,

respectively. These equations lead to rotational matrix elements
that can be found in Refs. [31,32] and to the two bending matrix
elements:

hv2;MjOpjv 02;M0i; ð9Þ

where Op is either 1 or 1=ð1� tÞ. These matrix elements should be

computed using Eq. (16) of Ref. [9] where hhabn jOpjha
0b0

n0 i the matrix
element on the right hand side of this equation can either be calcu-
lated using Eq. (17) of this reference or Eq. (A.1) of the present
paper. When DK ¼ 1, the matrix element in Eq. (8) reduces to:

hWv2 ;J;K;cjHb-rjWv 0
2
;J;K 0 ;c0 i ¼ hJ;K; cjHyjJ;K 0; c0i

� hv2;Mjf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
; Ptgjv 02;M0i

þ hJ;K; cjHxzjJ;K 0; c0i

� v2;M
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p
����

����v 02;M0
� 	

; ð10Þ

where

Hy ¼ Ae Jy and Hxz ¼ �AefJx; Jzg: ð11Þ

The rotational matrix elements of Hy and Hxz in Eq. (10) can be
found in Refs. [31,32]. The bending matrix elements of

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

; Ptg or 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

can be computed using Eqs. (30) and
(31) of Ref. [29] or Eqs. (A.1) and (A.4) of the present paper.
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