ARTICLE IN PRESS

Journal of Molecular Spectroscopy xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/jms

The bending potential energy function of HDO obtained from high-resolution data

L.H. Coudert

Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Universités Paris Sud et Paris-Saclay, 91405 Orsay, France

ARTICLE INFO

Article history: Received 26 April 2016 In revised form 30 June 2016 Accepted 20 July 2016 Available online xxxx

Keywords: HDO Anomalous centrifugal distortion Bending-Rotation approach Line position analysis Line strength analysis Spectroscopic database HITRAN 2012

1. Introduction

The HDO molecule is important in many areas and has been used, for instance, to study the atmosphere of terrestrial planets. Measurements of the ratio $\delta D = [HDO]/[H_2O]$ were thus performed in the atmosphere of Venus [1] and Mars [2]. In the case of the earth atmosphere, δD is measured using satellite observations and contains information about many processes such as the transport experienced by the water mass [3,4] or global climatological behavior [5]. HDO is also interesting from the spectroscopic point of view as it displays an anomalous centrifugal distortion, evidenced a long time ago [6], similar to that of the normal species H₂O [7]. A model developed to treat the anomalous distortion in HDO should account for the fact that it lacks a two-fold axis of symmetry.

A new treatment aimed at the calculation of the rovibrational energy of the HDO molecule and accounting for anomalous centrifugal distortion effects has been developed. It is a modified version of the Bending-Rotation approach initially developed for the normal species [8–12] and also relies on an effective Hamiltonian in which the large amplitude bending v_2 mode and the overall rotation of the molecule are treated simultaneously. Due to the lack of a two-fold axis of symmetry, this effective Hamiltonian contains terms arising from a non-diagonal component of the inertia

E-mail address: laurent.coudert@u-psud.fr

http://dx.doi.org/10.1016/j.jms.2016.07.008 0022-2852/© 2016 Elsevier Inc. All rights reserved.

ABSTRACT

Line position and line intensity analyses of the high-resolution spectrum of the HDO isotopic species of the water molecule are performed with an extended version of the Bending-Rotation approach up to the (010) state and J = 22. The line position analysis involves 3992 microwave, far infrared and infrared lines, and 421 experimental energy levels which were reproduced with a 1.1 unitless standard deviation. The data set considered in the line intensity analysis consists of 1405 infrared absorpon lines and 4 Stark coefficients fitted with a 1.2 unitless standard deviation. The results of both analyses are compared with previous investigations and are used to build a spectroscopic database which is compared with other available databases and should be useful for interpreting measurements carried out with the Infrared Atmospheric Sounding Interferometer (IASI).

© 2016 Elsevier Inc. All rights reserved.

MOLECULAR SPECTROSCOPY

tensor and from the Coriolis coupling between the large amplitude bending v_2 mode and the overall rotation of the molecule.

This new treatment has been used to perform a line position analysis of a large body of microwave [6,13,14], infrared [15–18], hot water vapor [19,20], and experimental levels [18] data involving the ground and (010) states up to J = 22. For these 4413 data, a unitless standard deviation of 1.1 was achieved. A line intensity analysis was also carried out and allowed us to reproduce the strength of 1405 transitions [16,18] and 4 Stark coefficients [21] with a unitless standard deviation of close to unity. The results of the line position analysis are compared with those of a previous investigation [22]. A Hitran-type spectroscopic database spanning the 0–2000 cm⁻¹ region is built and compared with HITRAN 2012 [23] and with the database built in Ref. [24] for planetological purposes.

This paper has four remaining sections. The extended version of the Bending-Rotation approach used for the rovibrational energy and line strength calculations is presented in Section 2. Section 3 deals with the line position and line strength analyses, and with the Hitran-type spectroscopic database. Section 4 is the discussion.

2. Theory

The Bending-Rotation approach [8–12] initially designed to account for anomalous centrifugal distortion effects in the normal species of water [7] is extended to molecules without a two-fold

2

ARTIC<u>LE IN PRESS</u>

L.H. Coudert/Journal of Molecular Spectroscopy xxx (2016) xxx-xxx

axis of symmetry as HDO. Like in Refs. [8–12], a bending-rotation Hamiltonian is built starting from the exact Hamiltonian of a triatomic molecule written using Radau's coordinates [25,26].

2.1. The bending-rotation Hamiltonian

The exact quantum mechanical Hamiltonian of a triatomic molecule is well known and can be found in Ref. [27] when the usual bond angle and bond lengths internal coordinates are used and in Ref. [28] when Radau coordinates are used. In this work, we will use the exact Hamiltonian in Eq. [1] of Ref. [29], also written with Radau coordinates, but where, instead of the Radau angular coordinate θ , the bending coordinate $t = \cos \theta$ is used. Just like in Ref. [8], terms involving the conjugated momenta P_{r_1} and P_{r_2} are ignored and the Radau stretching coordinates r_1 and r_2 are set to their equilibrium value r_{1e} and r_{2e} . This yields the following bending-rotation Hamiltonian:

$$H_{b-r} = B_e P_t (1 - t^2) P_t + V(t) + B_e \left[\frac{J_x^2}{2(1 - t)} + \frac{J_y^2}{4} + \frac{J_z^2}{2(1 + t)} \right] + A_e \left[J_y \{ \sqrt{1 - t^2}, P_t \} - \frac{\{J_x, J_z\}}{\sqrt{1 - t^2}} \right],$$
(1)

where P_t is the momentum conjugated to t; J_x , J_y , and J_z are the components of the rotational angular momentum in the molecule-fixed axis system; {, } is the anticommutator; V(t) is the potential energy function; and B_e and A_e are two constants. (In Eq. (1), the term in A_e accounts for a typographical error in Eq. (1) of Ref. [29].) B_e and A_e can be expressed in terms of r_{1e} , r_{2e} and the atom masses:

$$B_e = \frac{1}{2} \left(\frac{1}{m_1 r_{1e}^2} + \frac{1}{m_2 r_{2e}^2} \right),$$

$$A_e = \frac{1}{4} \left(\frac{1}{m_2 r_{2e}^2} - \frac{1}{m_1 r_{1e}^2} \right).$$
(2)

Assuming atoms 1 and 2 are the deuterium and hydrogen atoms, respectively, we obtain [30] $r_{1e} = 0.9127$ and $r_{2e} = 0.9467$ Å yielding $B_e = 28.722$ and $A_e = 4.310$ cm⁻¹. As in the previous approaches [8–12], the potential energy function in Eq. (1) is approximated by a sixth order polynomial of *t*:

$$V(t) = \sum_{i=1}^{6} V_i t^i,$$
(3)

where V_i , with $1 \le i \le 6$, are six constants.

Comparing the bending-rotation Hamiltonian obtained in Ref. [8] and the one obtained in this work shows that the lack of two-fold axis of symmetry leads to an extra term, the term in A_e . This term describes the Coriolis coupling between the overall rotation and the v_2 mode and includes a non-diagonal contribution from the inertia tensor. This term gives rise to non-diagonal rotational matrix elements only.

2.2. Vibrational and rovibrational matrix elements

Like in Ref. [9], a bending Hamiltonian is extracted from the bending-rotation Hamiltonian in Eq. (1) retaining only those terms having diagonal rotational matrix elements between two usual symmetric top rotational functions $|J, K\rangle$, where the quantum number *M* is ignored for simplicity. The *t*-dependent bending Hamiltonian takes the following expression:

$$H_{\rm b} = M_f P_t (1 - t^2) P_t + \sum_{i=1}^6 M_i t^i + \frac{1}{2} \left(\frac{M_+}{1 + t} + \frac{M_-}{1 - t} \right), \tag{4}$$

where M_i , M_+ , M_- , and M_i , with $1 \le i \le 6$, are 9 constants given by:

$$\begin{split} M_{f} &= B_{e}, \\ M_{+} &= B_{e}K^{2}, \\ M_{-} &= B_{e}[J(J+1) - K^{2}]/2, \\ M_{i} &= V_{i}, \quad \text{with } 1 \leqslant i \leqslant 6. \end{split}$$
 (5)

Matrix elements of the bending Hamiltonian in Eq. (4) between two $\theta_n^{\chi\beta}(t)$ basis set bending functions, as defined in Eq. (4) of Ref. [9], take the following expression:

$$\langle \theta_n^{\alpha\beta} | H_{\mathsf{b}} | \theta_{n'}^{\alpha\beta} \rangle = M_f v(\nu+1) \delta_{n,n'} + \sum_{i=1}^6 M_i \langle \theta_n^{\alpha\beta} | t^i | \theta_{n'}^{\alpha\beta} \rangle, \tag{6}$$

where in agreement with Refs. [8,9], α and β are respectively $\sqrt{M_-/M_f}$ and $\sqrt{M_+/M_f}$, and $\nu = n + (\alpha + \beta)/2$. Evaluation of the matrix elements of t^i in Eq. (6) can either be performed, using Table I of Ref. [9], when $i \leq 4$, or Eq. (A.1) of the present paper for any *i*-values. The matrix of the bending Hamiltonian H_b is setup using Eq. (6) for $0 \leq n, n' \leq n_{Max}$, where n_{Max} is a positive integer. Diagonalization yields bending energies and eigenfunctions which will respectively be written:

$$\begin{cases} E(\nu_2, M), \\ |\nu_2, M\rangle = \sum_{n=0}^{n_{\text{Max}}} C_n(\nu_2, M) |\theta_n^{\alpha\beta}\rangle, \end{cases}$$
(7)

where v_2 is the vibrational quantum number for the bending v_2 mode, M is a shorthand notation for the 9 constants defined in Eq. (5), and $C_n(v_2, M)$ are real expansion coefficients.

Rovibrational matrix elements of the bending-rotation Hamiltonian are evaluated using the basis set rovibrational wavefunctions in Eq. (11) of Ref. [9]. We are led to evaluate the matrix element:

$$\langle \Psi_{\nu_2,J,K,\gamma} | H_{\mathbf{b}-\mathbf{r}} | \Psi_{\nu'_2,J,K',\gamma'} \rangle, \tag{8}$$

which is nonvanishing if $\Delta K = |K - K'| \leq 2$ and $\gamma' = \gamma(-1)^{\Delta K}$. When $\Delta K = 0$ or 2, this matrix element can be retrieved from Eqs. (14) and (15) of Ref. [9] replacing H_0, H_+ and H_- by $B_e J_y^2 / 4, B_e J_z^2$, and $B_e J_x^2$, respectively. These equations lead to rotational matrix elements that can be found in Refs. [31,32] and to the two bending matrix elements:

$$\langle v_2, M | Op | v'_2, M' \rangle,$$
 (9)

where *Op* is either 1 or 1/(1-t). These matrix elements should be computed using Eq. (16) of Ref. [9] where $\langle \theta_n^{\alpha\beta} | Op | \theta_{n'}^{\alpha'\beta'} \rangle$ the matrix element on the right hand side of this equation can either be calculated using Eq. (17) of this reference or Eq. (A.1) of the present paper. When $\Delta K = 1$, the matrix element in Eq. (8) reduces to:

$$\langle \Psi_{\nu_{2}J,K,\gamma}|H_{\text{b-r}}|\Psi_{\nu_{2}'J,K',\gamma'}\rangle = \langle J,K,\gamma|H_{y}|J,K',\gamma'\rangle \\ \times \langle \nu_{2},M|\{\sqrt{1-t^{2}},P_{t}\}|\nu_{2}',M'\rangle \\ + \langle J,K,\gamma|H_{xz}|J,K',\gamma'\rangle \\ \times \left\langle \nu_{2},M\Big|\frac{1}{\sqrt{1-t^{2}}}\Big|\nu_{2}',M'\right\rangle,$$
(10)

where

$$H_y = A_e J_y$$
 and $H_{xz} = -A_e \{J_x, J_z\}.$ (11)

The rotational matrix elements of H_y and H_{xz} in Eq. (10) can be found in Refs. [31,32]. The bending matrix elements of $\{\sqrt{1-t^2}, P_t\}$ or $1/\sqrt{1-t^2}$ can be computed using Eqs. (30) and (31) of Ref. [29] or Eqs. (A.1) and (A.4) of the present paper.

Please cite this article in press as: L.H. Coudert, J. Mol. Spectrosc. (2016), http://dx.doi.org/10.1016/j.jms.2016.07.008

Download English Version:

https://daneshyari.com/en/article/5414088

Download Persian Version:

https://daneshyari.com/article/5414088

Daneshyari.com