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a b s t r a c t

Recent applications of chirped-pulse Fourier transform microwave and millimeter wave spectroscopy
have motivated the use of short (10–50 ns) chirped excitation pulses. In this regime, individual transi-
tions within the chirped pulse bandwidth do not all, in effect, experience the same frequency sweep
through resonance from far above to far below (or vice versa), and ‘‘edge effects’’ may dominate the rela-
tive intensities. We analyze this effect and provide simplifying expressions for the linear fast passage
polarization response in the limit of long and short excitation pulses. In the long pulse limit, the
polarization response converges to a rectangular function of frequency, and in the short pulse limit,
the polarization response morphs into a form proportional to the window function of the Fourier-
transform-limited excitation pulse.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Chirped-pulse Fourier-transform microwave (CP-FTMW) spec-
troscopy, invented in Professor Brooks Pate’s lab [1,2], is rapidly
becoming a mainstream technique for broadband (> 10 GHz)
high-resolution microwave and millimeter-wave spectroscopy.
Since its inception, CP-FTMW has also been a dynamically-relevant
technique. Dian et al. [2] show that the spectral coalescence of the
broadband rotational spectrum of a highly vibrationally-excited
species can be used to extract dynamical information about
intramolecular vibrational energy redistribution (IVR) and chemi-
cal isomerization. Fine structure in the chirped-pulse spectrum of
the prism isomer of the water hexamer enables the measurement
of hydrogen-bond network rearrangement [3]. Prozument et al. [4]
have used chirped-pulse millimeter wave spectroscopy to obtain
meaningful product branching ratios and vibrational population
distributions from a flash pyrolysis reactor. Recent work in the A.
G. Suits lab [5,6] has demonstrated the use of time-domain CP-
FTMW measurements to measure the vibrationally-specific rate
of appearance of unimolecular and bimolecular reaction products
in a cold uniform flow.

Because of growing interest in CP-FTMW as a tool for kinetics
and dynamics, there is an increasing necessity for reliable,
quantitatively accurate measurement of relative intensity across
broadband spectral regions. At the same time, several factors are
driving researchers to use chirped excitation pulses of shorter

duration. First, there has been a push to extend chirped-pulse spec-
troscopy to higher millimeter-wave frequencies, where Doppler
dephasing times become short [7–9]. Next, the use of CP-FTMW
by Abeysekera et al. [6] to study bimolecular reactions at pressures
as high as � 0:2 mbar leads to a regime where the coherence time
is shortened by pressure broadening. Indeed, the authors of Ref. [6]
found that when using 1 ls long excitation pulses, dephasing phe-
nomena had a significant effect on the relative intensities. As a
result of dephasing during the excitation pulse, intensities of tran-
sitions that were excited early in the chirped pulse were weakened
relative to those of transitions excited later in the pulse. The prob-
lem was mitigated by decreasing the pulse duration to 250 ns, or
by taking the frequency-domain average between spectra from
‘‘up-chirp’’ and ‘‘down-chirp’’ excitation pulses. (See Fig. 2 of Ref.
[6].) Proposed experiments to probe pure-electronic transitions
in Rydberg molecules rely on chirped pulse schemes for rapidly
populating non-core-penetrating high-l states before pre-
dissociation occurs [10,11]. Finally, kinetic schemes involving
time-resolved broadband microwave spectroscopy [6] motivate
fast excitation pulses to achieve the best time-resolution for moni-
toring state-resolved reactant and product populations.

References [4,12] discuss the need for the chirped excitation
pulse to be in the weak-field (fast-passage) limit rather than the
strong-field (adiabatic rapid passage) limit in order to avoid sat-
uration effects on the relative intensities. References [6,13] and
others discuss the need for the duration of the excitation pulse to
be short relative to the coherence decay time in order to achieve
accurate relative intensities. However, most authors have ignored
‘‘edge effects’’ on relative intensities in chirped-pulse spectra.
Therefore, we will discuss these effects briefly. These effects
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become pronounced as one uses shorter excitation pulses. It is
important to point out that we do not derive any novel physics
in this paper. Our results may all be obtained from analysis of
the equations presented in Refs. [14,15] and reviewed in detail in
Ref. [16].

2. Polarization from a linearly chirped pulse in the weak
coupling limit

The polarization response P ¼ 2ðPr cosxt � Pi sin xtÞ of a two-
level system to a linearly swept excitation pulse of the form
E ¼ 2E cosðxt � kzÞ is reported in the weak coupling limit by
McGurk et al. [15,14] and is also discussed in Ref. [13] and
reviewed in detail in Ref. [16]. If phenomenological dephasing
terms are ignored, the optical Bloch equations for this situation is
exactly solvable. The solution is given by
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where CðaÞ and SðaÞ are the Fresnel integrals,

CðaÞ ¼
Z a

0
cosðpx2=2Þdx; SðaÞ ¼

Z a

0
sinðpx2=2Þdx;

lab is the transition dipole moment, DN0 is the population differ-
ence of the two-level system, E and a are the electric field strength
and sweep rate of the driving pulse, respectively, and Dxi and Dxf

are the initial and final values of the detuning from resonance. We
have simplified the expression derived by McGurk et al. noting that
the Fresnel integrals are odd functions, Cð�aÞ ¼ �CðaÞ and
Sð�aÞ ¼ �SðaÞ, which allows us to remove the absolute values and
the � choices.

The solutions (1) and (2) seem complicated, but the form is sim-
plified by the assumptions

jDxij � ðpaÞ1=2
; jDxf j � ðpaÞ1=2

: ð3Þ

With this assumption, we can use the limiting behavior of the
Fresnel integrals,

lim
a!�1

CðaÞ ¼ �0:5 lim
a!�1

SðaÞ ¼ �0:5

lim
a!þ1

CðaÞ ¼ þ0:5 lim
a!þ1

SðaÞ ¼ þ0:5;

We assume the case where Dx is swept through resonance
from negative to positive (Dxi < 0; Dxf > 0, and a > 0). From
Assumption (3), we obtain

Pr �
jlabj
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In the case where Dx is swept in the other direction, the phase of
Eqs. (4), (5) will change, but the magnitude will remain the same.
Assumption (3) will hold for most chirped pulse experiments as
long as the sweep rate is not too fast and the molecular resonance

is not too close in frequency to the initial or final frequency of the
linearly swept excitation pulse—i.e., if the transition is not too close
to the high- or low-frequency edge of the spectrum. For a typical
chirped pulse experiment, the excitation pulse sweeps through a
bandwidth of �10 GHz during a time interval of �1 ls, so

a � 1016 s�2 and ðpaÞ1=2 � 180 MHz. Furthermore, in this case, the
values of the square-bracketed terms in Eqs. (1) and (2) will be
within �20% of unity for any transition not within 30 MHz of the
boundaries Dxi or Dxf , so the approximation in Eqs. (4) and (5) will
usually apply. With these typical conditions, the approximation will
be invalid only for transitions located in the outer 0.3% wings of the
frequency span of the applied pulse.

Eqs. (4) and (5) may be simplified even further to give the mag-
nitude of the oscillating polarization. Recalling the definitions of Pr

and Pi , we see that the bracketed sin and cos terms in Eqs. (4) and
(5) merely describe the rapid oscillation of the polarization in the
rotating frame of the applied electromagnetic field. Because the
polarization of the molecular resonance will oscillate at a fre-
quency x0 in the non-rotating frame, we may write

P � 2jlabj
2EDN0
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where / is a phase that may be determined from Eqs. (4) and (5)),

and the prefactor, 2jlabj
2EDN0=�h gives the magnitude of the oscillat-

ing polarization.

3. Limiting behavior of the polarization response with respect
to pulse duration

For very short excitation pulses, Assumption 3 is invalid.
Therefore, it is useful to examine the limiting behavior of Eqs. (1)
and (2) as a!1 and a! 0. The evolution of the polarization
response from a 10 GHz bandwidth excitation pulse is shown in
Fig. 1. We define the nominal bandwidth, Dxp, and duration, Tp,
of the chirped excitation pulse such that

Dxp ¼ Dxf � Dxi

Tp ¼ Dxp

a
:

3.1. Long pulse limit

In the limit of very long pulse duration ða! 0Þ, Assumption (3)
applies and the limiting behavior of the Fresnel integrals is rele-
vant. Note that the signs of the Fresnel integrals in Eqs. (1), (2)
depend on the signs of Dxi and Dxf . Assuming Dxf > Dxi, there
are three cases:

lim
a! 0
lE ! 0

jPj ¼

0 Dxf < 0 and Dxi < 0
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The first and third cases of Eq. (7) apply when the resonance is
below or above the excitation pulse bandwidth and the second case
applies when the resonance is within the excitation bandwidth.
Thus, we see that in the a! 0 limit of an infinitely long excitation
pulse, Eqs. (1) and (2) become a square wave excitation with a com-
pletely flat polarization response. (See Fig. 1(f).) Of course, Eqs. (1)
and (2) also assume the weak field limit (lE=�h� a1=2, i.e. the
Rabi frequency is slow compared with the sweep rate) and neglects
dephasing. Thus, to obtain this result we have also implicitly
assumed an infinitesimal lE and 1=T2 coherence dephasing rate.
Therefore, panel (f) of Fig. 1 is not intended to represent a physically
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