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a b s t r a c t

In this paper we report transition frequencies and line strengths computed for bright states of the NNO
dimer. We use a previously reported potential obtained from explicitly correlated coupled-cluster calcu-
lations and fit using an interpolating moving least-squares method. The rovibrational Schroedinger equa-
tion is solved with a symmetry adapted Lanczos algorithm and an uncoupled product basis set. All four
inter-molecular coordinates are included in the calculation. We propose two tools for associating rovibra-
tional wavefunctions with vibrational states and use them to find polar-like and T-shaped-N-in-like rovi-
brational states. The first tool uses a re-expansion of the rovibrational wavefunction in terms of J = 0
eigenfunctions. The second uses intensities. Calculated rotational transition frequencies are in very close
agreement with experiment.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The spectroscopy of (NNO)2 has interested experimentalists and
theorists for many years [1–14]. (NNO)2 is a loosely bound Van der
Waals complex of the type that has interested McKellar and his co-
workers [1–3,15–18]. It has important large amplitude motions of
the type that have interested Bunker and his co-workers [19–27].
The deepest minimum on the (NNO)2 potential energy surface
(PES) corresponds to a non-polar slipped-anti-parallel structure
with C2h symmetry. Spectra attributed to the m2 and m3 fundamen-
tals and to the m2 + m3 combination band (intra-molecular modes)
were observed [6,7]. Also observed were combination bands
involving the (inter-molecular) torsion and disrotatory coordinates
[2,5,9]. Transitions among states associated with a polar isomer (or
isomers) of (NNO)2 have also recently been observed [1,3]. As dis-
cussed in Ref. [13] (hereafter denoted paper I) and Ref. [14] there
are two polar isomers and both have a slipped-parallel structure
with Cs symmetry. A microwave spectrum of the polar isomer
was also recorded [4]. In this paper we use an accurate PES and
compute rovibrational spectra considering the four inter-molecu-
lar coordinates. In paper I we presented the PES and energy levels
associated with the global non-polar minimum. In this paper we
present intensities and focus on understanding the microwave

spectrum of the polar isomer. There have been several theoretical
studies of (NNO)2 using various levels of ab initio theory to deter-
mine structures and harmonic frequencies of the possible isomers.
In particular, Berner et al. used the (CCSD/aug-cc-pVDZ) method
[9]. They stress the importance of the disrotatory cycle.

The potential surface has local wells for both the polar and the
T-shaped-N-in (TN) shapes. There are two equivalent wells for
both the polar and the TN shapes. The questions that are the focus
of this paper are: (1) Are there vibrational states that are localized
in the local minima (polar and TN)? How does one identify
polar-like and TN-like rovibrational states if they exist? (2) To
what extent are the intensities of transitions between polar-like
rovibrational states determined by the selection rules one would
expect if the complex were rigid and had the shape corresponding
to the bottom of a polar well? (3) Does tunneling between equiv-
alent wells give rise to splittings that might be observable? Some
of these questions were addressed in a recent paper [14]. The po-
tential used in Ref. [14] has no or perhaps very shallow TN minima
and no TN states were reported, but some of polar-like states of
Ref. [14] are close to those we obtain. Ref. [14] does not present
intensities or discuss how to identify J > 0 polar-like states.

We find polar-like states and propose two tools for identifying
their associated vibrational states. Polar-like states are expected
owing to the fact that microwave transitions were observed [4]
and assigned to the polar isomer. The first tool uses intensities.
Transitions between polar-like and TN-like rovibrational states
are bright, but transitions between other rovibrational states are
not. States linked by weak transitions, i.e. dark states, all have sig-
nificant amplitude in the global minimum well. The second tool
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uses a re-expansion of the J > 0 wavefunctions in the basis of J = 0
eigenfunctions.

2. Potential energy surface

A four-dimensional (rigid monomer) potential energy surface
was made using an interpolating moving least-squares fitting
method. 1757 ab initio points computed at the CCSD(T)-F12b/
VTZ-F12 level [28] were used to produced a surface with an esti-
mated fitting error of less than 1.5 cm�1. Details were discussed
in paper I. In this section, we summarize the features related to
the tunneling dynamics between the two equivalent polar wells.

The coordinates used to compute the rovibrational levels and
wavefunctions were described in paper I. They are r0, the distance
between the two monomers, the standard polyspherical angles
(h1,h2,/2), and the Euler angles (a,b,c) [29–32]. The nature of the
large-amplitude motion is more easily understand using the ex-
tended angles ð~h1; ~h2Þ defined by extending the range of (h1,h2)
from [0,p] to [0,2p]. They were used by Hougen and Ohashi for
HF dimer [33]. The disrotatory (X) and conrotatory (Y) coordinates
are easily defined in terms of the extended angles: X ¼ ð~h1 þ ~h2Þ=2
and Y ¼ ð~h1 � ~h2Þ=2. Fig. 1 is a contour diagram of the potential. For
each pair of values (h1,h2) the potential is minimized with respect
to r0 for both /2 = 180� and /2 = 0�. The two polar wells are in the
lower panel of Fig. 1. Starting from the polar well at (h1 �
120�,h2 � 120�) one moves counterclockwise around the disrotato-
ry cycle, from one polar structure to the other, by following the po-
tential valley to the T shaped structure at (h1 � 180�, h2 � 90�) and
then moving to the upper panel, proceeding to the N-in non-polar
structure, denoted NN on the plot, and moving back to the lower
panel and along to the polar minimum at (h1 � 60�, h2 � 60�). The
same path is shown in the extended coordinates in Fig. 2. In this
case it is only necessary to exit and enter once to follow the path
between the two polar minima P1 and P2 (P3 and P4 are copies).
The full disrotatory cycle (Fig. 3), as first shown by Berner et al.
[9], goes from the global minimum (non-polar-O-in) (G1), to a
T-shaped O-in (TO1) transition state, to a polar well (P1), to a
T-shaped-N-in (TN1) well, to the non-polar N-in transition state
(NN1), to a TN2 well, to the P2 well, through a TO2 transition state,
and finally back to G1.

Three tunneling paths connect the two polar wells. Two of them
follow the disrotatory cycle, one in a clockwise sense and one in an
anticlockwise sense. The first path (called disrotatory path I) is
P1 ? TO1 ? G1 ? TO2 ? P2. The second path (called disrotatory
path II) is P1 ? TN1 ? NN1 ? TN2 ? P2. These two paths are
marked by dashed arrows in Fig. 3. The third path is conrotatory
(Fig. 4). It is P1 ? RT ? P3. When the path is defined by finding val-
ues of X and r0 that minimize the potential for each value of Y the
RT transition state is approximately rectangle-shaped. Its coordi-
nates are h1 = 91.9�, h2 = 88.1�, and r0 = 6.996 bohr. The blue con-
tours of Fig. 1 reveal RT. The RT shape is not an exact rectangle
and therefore its point group symmetry is not C2v but rather Cs,
the same as other points along this path. The energetics of the var-
ious stationary points are given in Table 1. Geometries of all the
stationary points except RT are also given in Table 5 of paper I.
The barrier height for disrotatory path I is 105 cm�1 (TO). The bar-
rier height for disrotatory path II is 142 cm�1 (NN). The barrier
height for the conrotatory path is 400 cm�1 (RT). The width of
the conrotatory barrier is much less than the width of the barrier
of disrotatory path II. Disrotatory path I has two barriers.

It is not clear that only one of the three paths is important and
therefore the tunneling dynamics could be quite complicated. This
may be contrasted with the tunneling in HF dimer where one dis-
rotatory path is the dominant path. Mills [34] and also Hougen and
Ohashi concluded [33] that if one tunneling path is dominant the

symmetry of a vibration–rotation–tunneling level is a product of
the symmetry of a rotational factor, determined assuming a rigid
shape with the symmetry of the point group of the transition state
shape, and the symmetry of a vibrational/tunneling factor. Accord-
ing to our calculation the tunneling splittings are very small, pri-
marily because the mass of the monomer is relatively large. Even
if it were possible to identify one or more paths as being more
important, doing so would have no consequences for understand-
ing the spectrum.

3. Calculating energy levels and wavefunctions

The polyspherical coordinates defined in the previous section
are used to compute the energy levels. Details were given in Paper
I. Euler angles specify the orientation of a body-fixed frame at-
tached such that the z-axis is along r0 and the x-axis is along the
vector r0 � r1 � r0. r0 is the inter-monomer vector and r1is the vec-
tor along monomer 1, pointing from the external N atom to O
atom. The kinetic energy operator in these coordinates is well
known [35]. For the stretch coordinates we use potential optimized
discrete variable representation (PODVR) functions [36–41] and for
the bend and rotational coordinates we use parity-adapted rovi-
brational functions [30,31]. In our calculations the angular quan-
tum numbers (see paper I) l1, l2, and m2 all have the same
maximum value. Even and odd parity levels are calculated
separately.

Within each parity block, we use a symmetry adapted variant
[42–44] of the Cullum and Willoughby Lanczos method [45] to
compute the energy levels. Eigenvalues are obtained by computing
matrix–vector products. Potential matrix–vector products are eval-
uated by using quadrature and doing sums sequentially [37,44,46–
48]. Kinetic energy matrix-elements are given in Ref. [35]. The
wavefunctions are obtained from eigenvectors of the Hamiltonian
matrix that are computed as described previously [30,49]. Similar
techniques have been used to compute energy levels of many mol-
ecules [37,50–53]. The full permutation–inversion (PI) symmetry
group for the Hamiltonian we use is G4, composed of operations
{E,rex} � {E,E⁄} where rex permutes monomer 1 with monomer 2
[19]. A/B label symmetric and anti-symmetric irreducible represen-
tations (irreps) with respect to rex and ± label even and odd pari-
ties. There are four PI irreps: (A+,B+,A�,B�). Transformation
properties of parity-adapted rovibrational basis functions under
G4 operators are given in Ref. [54]. The dipole moment of the com-
plex has A� symmetry. Allowed transitions are therefore A+ M A�
and B+ M B�. For the results presented in Section 6 we use the
basis, quadrature points, masses and NNO rotational constant used
in paper I.

4. Identifying rovibrational states associated with polar-like or
TN-like vibrational states

When coupling between vibration and rotation is not too
strong, each rovibrational wavefunction can be approximated as
a product of a vibrational wavefunction and a rotational function.
The vibrational wavefunction associated with a rovibrational state
can be determined on the basis of the energy level pattern, if all
vibrational levels are widely-spaced. Energy levels are calculated
separately for each J and for each J one can identify groups of 1,
3, 5,. . . rotational levels. This simple procedure fails when rota-
tional and vibrational energy levels are similar, i.e. when the den-
sity of vibrational states is large. Note that although the density of
vibrational states may make it impossible to determine the vibra-
tional wavefunction associated with a rovibrational state, it does
not necessarily invalidate the product approximation. The simple
procedure also fails whenever there are groups of nearly degener-
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