Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/jms

The [1 + 1] two-photon dissociation spectra of $CO_2^+(X^2\Pi_g(\Omega = 3/2))$ via $A^2\Pi_{u,3/2}(\upsilon_1\upsilon_2 0) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions

Maoping Yang, Limin Zhang*, Danna Zhou, Qian Sun

Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

ARTICLE INFO

Article history: Received 19 January 2010 In revised form 9 March 2010 Available online 17 March 2010

Keywords: CO₂⁺ Two-photon dissociation spectra Vibronic bands

ABSTRACT

The mass-resolved [1+1] two-photon dissociation spectra of $CO_2^+(X^2\Pi_g(\Omega = 3/2))$ via $A^2\Pi_{u,3/2}(v_1v_20) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions were studied by introducing a dissociation laser with a wavelength of 283–353 nm. $CO_2^+(X^2\Pi_{g,3/2}(000))$ was prepared by the [3+1] multiphoton ionization of CO_2 at 333.69 nm. The vibronic bands of $(v_120; v_1 = 0-5)\mu^2\Pi_{3/2}$ and $(v_120; v_1 = 0-5)\kappa^2\Pi_{3/2}$ involving the bending mode of $CO_2^+(A^2\Pi_{u,3/2})$ were assigned. Based on the assignments, the spectral constants of $T_e = 27969.3 \pm 1.2 \text{ cm}^{-1}$ [above $CO_2^+(X^2\Pi_{g,3/2})$], $v_1 = 1125.89 \pm 0.53 \text{ cm}^{-1}$, $\chi_{11} = -0.659 \pm 0.010 \text{ cm}^{-1}$, $v_2(\mu^2\Pi_{3/2}) = 429.5 \pm 9.7 \text{ cm}^{-1}$, and $v_2(\kappa^2\Pi_{3/2}) = 528.7 \pm 8.0 \text{ cm}^{-1}$ for $CO_2^+(A^2\Pi_{u,3/2})$ were deduced. The photodissociation dynamics of CO_2^+ via $A^2\Pi_{u,3/2}(v_1v_20) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions are discussed. (© 2010 Elsevier Inc. All rights reserved.

The linear triatomic CO_2^+ ion is an important component in planetary atmospheres [1], and its spectroscopy and dynamic behavior have attracted the attention of experimenters and theoreticians [2]. The vibronic structures of $CO_2^+(X^2\Pi_g, A^2\Pi_u, B^2\Sigma_u^+, C^2\Sigma_g^+)$ have been investigated previously using various experimental techniques, including emission [3-5], laser absorption [6,7], HeI photoelectron [8-15], threshold photoelectron (TPE) [16,17], photoionization efficiency [18-20], photoelectron-photon coincidence [21], photoion-photon coincidence [22], photoelectron-photoion coincidence [23], pulsed field ionization (PFI)-photoelectron (PFI-PE) [24-28], PFI-PE-photoion (PFI-PE-PI) coincidence [29] measurements, and resonance enhanced multiphoton ionization [30,31]. However, there are few reports on the vibronic level-selected excitation and dissociation spectroscopy for CO_2^+ , which could provide more detailed information for the photochemistry of CO_2^+ in a direct way compared to the photoelectron spectra of neutral molecule. In our previous study, we obtained the [1 + 1] two-photon dissociation spectra of CO_2^+ $(X^2\Pi_g(\Omega = 1/2))$ via $A^2\Pi_{u,1/2}(\upsilon_1\upsilon_20) \leftarrow X^2\Pi_{g,1/2}(000)$ transitions [32]. Because the (000) band intensity of $CO_2^+(X^2)$ $\Pi_{g}(\Omega = 3/2))$ is much weaker than that of $CO_{2}^{+}(X^{2}\Pi_{g}(\Omega = 1/2))$, a higher signal to noise ratio is needed to study $CO_2^+(X^2\Pi_g) =$ 3/2) ions. In this study, we present a similar study on the [1 + 1]two-photon dissociation spectra of $CO_2^+(X^2\Pi_g(\Omega=3/2))$ with a pulsed tunable laser with a wavelength range of 283-353 nm. By combining data from this study with the data from our previous study, more integrated data on the $A^2\Pi_{\mu}$ state of CO_2^+ was obtained.

The experimental setup has been previously described [32-34]. Jet-cooled CO₂ molecules were produced by supersonic expansion of pure CO₂ gas at about 3 atm through a pulsed nozzle (General Valve) with a nozzle orifice diameter of 0.5 mm and were introduced into a photoionization chamber. The ionization laser at 333.69 nm was perpendicularly focused on the molecular beam of CO₂ by a quartz lens with f = 135 mm to produce a CO₂⁺ ion via [3 + 1] resonance-enhanced multiphoton ionization (REMPI) of CO₂ molecules [30,31]. The dissociation laser (~0.2 mJ/pulse) at 283–353 nm counterpropagating with the ionization laser was focused by a quartz lens with f = 320 mm to excite CO₂⁺ (X²Π_{g.3/2}). Both lasers were temporally and spatially matched with each other at the laser-molecular interaction point. The wavelength of the lasers was calibrated using a wavemeter.

The ions were extracted and accelerated into a TOF (time of flight) mass spectrometer and drifted along a 70 cm long TOF tube. The ions were detected by a microchannel plate (MCP) detector, and the signals from the MCP output were amplified by a preamplifier (Stanford model SR240A). The mass-resolved data were collected by averaging the amplified signals for the selected mass species with a transient recorder and stored in a personal computer. The intensities of the ionization laser and the dissociation lasers were monitored simultaneously during the experiment.

As revealed by Wu and co-workers [35], in the resonance-enhanced multiphoton ionization photoelectron spectrum (REMPI-PES) of CO₂ via $3p\pi_u^1\Delta_u(\Omega = 3/2)$ spin–orbit state, the (000) level of CO₂⁺ (X²Π_{g,3/2}) is much stronger than those related to the higher vibrational levels of CO₂⁺ (X²Π_{g,3/2}) (see Fig. 1b in Ref. [35]). In this study, the CO₂⁺ ions were prepared in X²Π_{g,3/2}(000) states with minimum amounts of CO⁺, O⁺, and C⁺ ions, with a lens with *f* = 135 mm to focus the ionization laser (~5 mJ/pulse) at 333.69 nm. The involved [3 + 1] REMPI process of CO₂ to prepare CO₂⁺ (X²Π_{g,3/2}(000)) ions has been previously described [30,31].

Note

^{*} Corresponding author. E-mail address: lmzha@ustc.edu.cn (L. Zhang).

^{0022-2852/\$ -} see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jms.2010.03.006

$CO_2\Big(X^1\Sigma_g^+\Big) {\overset{3h\nu}{\to}} CO_2(3p\pi_u{}^1\Delta_u(3/2)) {\overset{h\nu}{\to}} CO_2^+\big(X^1\Pi_{g,3/2}(000)\big) + e.$

The mass-resolved photodissociation spectra (the depletion spectrum of parent ion CO_2^+ and the enhanced spectrum of fragment ions CO^+ , O^+ , and C^+) in Fig. 1 were obtained by scanning the dissociation laser in the range of 283-353 nm. Based on the spectroscopy of CO_2^+ previously reported [3,4,15,27,28,36], the photodissociation spectra could be completely assigned as the electronic transition of $CO_2^+(A^2\Pi_{u,3/2}(\upsilon_1\upsilon_2\mathbf{0})) \leftarrow CO_2^+(X^2\Pi_{g,3/2}(\mathbf{000}))$, where υ_1 and υ_2 represent vibrational quantum numbers for the v_1 (symmetric stretching) and v_2 (bending) modes, respectively. The possible assignments of the photodissociation spectra shown in Fig. 1 are summarized in Table 1. Note that the photodissociation spectra can be complicated by vibration-electronic interaction (Renner-Teller effect) and Fermi resonance interaction related to $CO_2^+(A^2)$ $\Pi_{u,3/2}(\upsilon_1\upsilon_20)$). The vibration–electronic interaction induces the Renner–Teller splitting of a ${}^{2}\Pi$ state (lower μ and upper κ components of $A^2\Pi_{u,3/2}$ in Table 1) whenever the bending vibration v_2 is excited [37]. Because the vibrational frequencies of $CO_2^+(A^2\Pi_{u,3/2})$ have the approximate relationship $v_1 \sim 2v_2$, a group of vibrational levels involving the symmetric stretch v_1 and overtones of the bending vibration v_2 , such as the $(v_1,0,0)$ and $(v_1-1,2,0)$ levels of CO_2^+ $(A^2\Pi_{u,3/2})$ can be coupled through strong Fermi resonances. Because of the strong Fermi resonance interaction, the unfavorable Franck-Condon transitions $A^2\Pi_{u,3/2}(v_1-1,2,0) \leftarrow X^2\Pi_{g,3/2}(000)$ can occur with comparable intensities due to strongly allowed transitions $A^2\Pi_{u, 3/2}(v_100) \leftarrow X^2\Pi_{g, 3/2}(000)$, which is indicated in Fig. 1.

As shown in Table 1, the v_{expt} values of $A(v_100; v_1 = 0 - 6)^2 \Pi_{3/2}$, $A(020; 520) \mu^2 \Pi_{3/2}$, and $A(020; 320; 420; 520) \kappa^2 \Pi_{3/2}$ are in good agreement with the known v_{PES} values [28]. Based on the data for the $A^2 \Pi_{u,1/2} \leftarrow X^2 \Pi_{g,1/2}$ transition in our previous study and the $A^2 \Pi_{u,3/2} \leftarrow X^2 \Pi_{g,3/2}$ transition presented in this work, it is now possible to identify several unresolved $A(v_1v_20) \mu^2 \Pi_{3/2,1/2}$ and $A(v_1v_20) \kappa^2 \Pi_{3/2,1/2}$ bands [28]. For example, we could certainly give the resolved v_{expt} values of $A(120, 220, 320, 420) \mu^2 \Pi_{3/2,1/2}$ and $A(120, 220) \kappa^2 \Pi_{3/2,1/2}$ bands to improve the unresolved v_{PES} values of the $A(120, 220, 320, 420) \mu^2 \Pi_{3/2,1/2}$ bands in Ref. [28].

The spectral constants of $T_e = 27969.3 \pm 1.2 \text{ cm}^{-1}$ [above $CO_2^+(X^2\Pi_{g,3/2})$], $v_1 = 1125.89 \pm 0.53 \text{ cm}^{-1}$, $\chi_{11} = -0.659 \pm 0.010 \text{ cm}^{-1}$, $v_2(\mu^2\Pi_{3/2}) = 429.5 \pm 9.7 \text{ cm}^{-1}$, and $v_2(\kappa^2\Pi_{3/2}) = 528.7 \pm 8.0 \text{ cm}^{-1}$ for $CO_2^+(A^2\Pi_{u,3/2})$ were deduced from the $A^2\Pi_{u,3/2}(v_1v_20) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions of CO_2^+ . The deduced vibrational frequencies for

Fig. 1. The mass-resolved [1 + 1] photodissociation spectra of CO_2^+ obtained in the wavelength range of 283–353 nm. The spectra are assigned to the $A^2\Pi_{u,3/2}(v_1v_20) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions of CO_2^+ .

 $CO_2^+(A^2\Pi_{u,3/2})$ are in accordance with those of $v_1 = 1127 \text{ cm}^{-1}$, and $v_2 = 461 \text{ cm}^{-1}$ given by emission spectra [3,4] and PFI-PE [28] spectra.

In addition, the spectral band of $B^2\Sigma_u^+(000) \leftarrow X^2\Pi_{g,3/2}(000)$ was also observed due to the overlap between $A^2\Pi_{u,3/2}$ and $B^2\Sigma_u^+$.

Considering that the one-photon excitation energy (3.51–4.38 eV) related to the resonance peaks in Fig. 1 cannot access the dissociation limit of CO_2^+ for the formation of O^+ (5.2738 eV), CO^+ (5.6724 eV) [29], and C^+ (6.98 eV) [38] from its electronic ground state, two photon excitation energy (7.02–8.76 eV) is needed to dissociate CO_2^+ . This means that the dissociation process of CO_2^+ via $A^2\Pi_{u,3/2}(v_1v_2 \ 0) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions to produce CO^+ , O^+ , and C^+ is a [1 + 1] two-photon process, that is, the intermediate state in this photodissociation process is the $A^2\Pi_{u,3/2}$ state of CO_2^+ .

Fig. 1 shows that CO⁺ is the main ionic product in the [1 + 1] photodissociation process of CO₂⁺ compared to O⁺ and C⁺. Moreover, the C⁺ yield is higher than the O⁺ yield, even though the dissociation limit to form O⁺ is the lowest. The percentage branching ratios of $[CO^+]/([CO^+] + [O^+] + [C^+])$, $[C^+]/([CO^+] + [O^+] + [C^+])$, and $[O^+]/([CO^+] + [O^+] + [C^+])$ measured in this work in the two photon energy range of 57000–70600 cm⁻¹ are shown in Fig. 2. The $[CO^+]/([CO^+] + [O^+] + [C^+])$ percentage branching ratio of 69–79% is much larger than the percentage branching ratios of $[C^+]/([CO^+] + [O^+] + [C^+])$ and $[O^+]/([CO^+] + [O^+] + [C^+])$, which were 14–20% and 6–11%, respectively. Similar photofragment branching ratios were also observed for the $(v_1 + 1, 0, 0)^2 \Pi_{3/2}$, $(v_1, 2, 0) \mu^2 \Pi_{3/2}$, and $(v_1, 2, 0) \kappa^2 \Pi_{3/2}$ bands.

Since CO⁺ is the main ionic product compared to O⁺ for the ionization energy of CO2 exceeding 19.5000 eV [5.7235 eV above $CO_2^+(X^2\Pi_{g,3/2}(000))$ [29] in the PFI-PEPICO experiment, it is reasonable to assume that the dissociation dynamics for the vibrationally excited levels of $CO_2^+(C^2\Sigma_{\alpha}^+)$ [39,29] are also applicable in the internal energy range of 7.02-8.76 eV above $CO_2^+(X^2\Pi_{g,3/2}(000))$. In terms of energy, a two photon energy of 7.02-8.76 eV can reach the high vibrational levels in the $(C^2\Sigma_g^+)^\dagger$ state via the allowed transitions of $(C^2 \Sigma_g^+)^{\dagger} \leftarrow A^2 \Pi_{u,1/2} \leftarrow X^2 \Pi_{g,1/2}$, where the superscript "†" denotes high vibrational levels in the corresponding electronic states. In addition, both the repulsive CO_2^+ ($b^4\Pi_u/^4B_1$) state connected with $CO^+(X^2\Sigma^+) + O({}^{3}P_{\sigma})$ and the repulsive $CO^+_2(a^4\Sigma^-_{\sigma})$ state connected with $O^{+}({}^{4}S_{u}) + CO(X^{1}\Sigma^{+})$ cover the energy range of 7.02–8.76 eV, where $b^4\Pi_{\rm u}/{}^4B_1$ represents either ${}^4\Pi_{\rm u}$ for the linear geometry or ⁴B₁ for the bent geometry (more stable geometry for this state) [39]. Thus, the dissociation should depend on the ways to reach $CO_2^+(b^4\Pi_u/{}^4B_1)$ or $CO_2^+(a^4\Sigma_{\sigma}^-)$. The direct transitions of $b^4 \Pi_u / {}^4B_1 \leftarrow \tilde{A}^2 \Pi_u$ and $a^4 \Sigma_g^- \leftarrow A^2 \Pi_u$ are forbidden by selection rules of $u \leftarrow | \rightarrow u$ or/and $S = 3/2 \leftarrow | \rightarrow S = 1/2$. Additionally, the direct predissociation of $CO_2^+(C^2\Sigma_g^+)$ ions via the $a^4\Sigma_g^-$ state to form $O^{+}({}^{4}S) + CO(X^{1}\Sigma^{+})$ is not possible because the spin–orbit coupling integral for these states $\langle a^4 \Sigma_{g}^+, m_s = 3/2 \mid \mathbf{L} \cdot \mathbf{S} \mid C^2 \Sigma_{g}^+, m_s = 1/2 \rangle$ gives no contribution for $\Delta m_s = 1$. Moreover, the predissociation of the vibrationally excited $CO_2^+(C^2\Sigma_g^+)^{\dagger}$ state at energies above the second dissociation limit $CO^+(X^2\Sigma^+) + O(^3P_g)$ can take place via the repulsive $b^4 \Pi_u / {}^4B_1$ state because the spin-orbit coupling between these two electronic states is highly efficient (\approx 40 cm⁻¹). Other ways leading to $O^+({}^4S_u) + CO(X^1\Sigma^+)$ by coupling between $\text{CO}_2^+(b^4\Pi_u/^4\text{B}_1)$ and $\text{CO}_2^+(a^4\Sigma_g^-)$, which leads to $\text{CO}^+(X^2\Sigma^+) + O(^3P_g)$ by the spin-orbit interaction between $CO_2^+(b^4\Pi_u/{}^4B_1)$ and $CO_2^+(X^2\Pi_g)^{\dagger}$ are also possible.

As indicated by the branching ratios of 7.2–11.5 for $[CO^+]/[O^+]$, a strong preference in the [1 + 1] photodissociation process to form CO_2^+ is observed for the formation of the $CO^+(X^2\Sigma^+) + O(^3P_g)$ channel compared to the formation of the lowest product channel $O^+(^4S_u) + CO(X^1\Sigma^+)$. This fact can be rationalized by the more efficient spin–orbit couplings between this state and the $b^4\Pi_u/^4B_1$ state because $CO_2^+(C^2\Sigma_g^+)^\dagger$ is prepared in states at 7.02–8.76 eV.

Download English Version:

https://daneshyari.com/en/article/5415222

Download Persian Version:

https://daneshyari.com/article/5415222

Daneshyari.com