Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00222852)

journal homepage: www.elsevier.com/locate/jms

The [1 + 1] two-photon dissociation spectra of $\mathsf{CO}_2^+(\mathsf{X}^2\Pi_\mathsf{g}(\Omega=3/2))$ via $\mathsf{A}^2\Pi_{\mathsf{u},3/2}$ (v_1v_20) \leftarrow $\mathrm{X}^2\Pi_{\mathrm{g},3/2}(000)$ transitions

Maoping Yang, Limin Zhang *, Danna Zhou, Qian Sun

Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

article info

Note

Article history: Received 19 January 2010 In revised form 9 March 2010 Available online 17 March 2010

Keywords: CO_2^+ Two-photon dissociation spectra Vibronic bands

ABSTRACT

The mass-resolved $[1+1]$ two-photon dissociation spectra of $CO_2^+(X^2\Pi_g(\Omega=3/2))$ via $A^2\Pi_{u,3}$ $_2$ (v_1v_2 0) \leftarrow X² $\Pi_{\rm g,3/2}$ (000) transitions were studied by introducing a dissociation laser with a wavelength of 283–353 nm. $CO_2^+(X^2\Pi_{g,3/2}(000))$ was prepared by the [3 + 1] multiphoton ionization of CO_2 at 333.69 nm. The vibronic bands of $(v_1 20; v_1 = 0-5)\mu^2 \Pi_{3/2}$ and $(v_1 20; v_1 = 0-5)\kappa^2 \Pi_{3/2}$ involving the bending mode of $\text{CO}_2^+(\text{A}^2\Pi_{\text{u},3/2})$ were assigned. Based on the assignments, the spectral constants of $T_e = 27969.3 \pm 1.2 \text{ cm}^{-1}$ [above $\text{CO}_2^+(X^2 \Pi_{g,3/2})$], $v_1 = 1125.89 \pm 0.53 \text{ cm}^{-1}$, $\chi_{11} = -0.659 \pm 0.010 \text{ cm}^{-1}$ $v_2(\mu^2 \Pi_{3/2}) = 429.5 \pm 9.7 \text{ cm}^{-1}$, and $v_2(\kappa^2 \Pi_{3/2}) = 528.7 \pm 8.0 \text{ cm}^{-1}$ for $\text{CO}_2^+(\text{A}^2 \Pi_{\text{u},3/2})$ were deduced. The photodissociation dynamics of CO₂⁺ via A² $\Pi_{u,3/2}(v_1v_20) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions are discussed. - 2010 Elsevier Inc. All rights reserved.

The linear triatomic CO $_2^{\scriptscriptstyle +}$ ion is an important component in planetary atmospheres [\[1\],](#page--1-0) and its spectroscopy and dynamic behavior have attracted the attention of experimenters and theoreticians The vibronic structures of $\mathcal{CO}_2^+(X^2\Pi_g, A^2\Pi_u, B^2\Sigma_u^+, C^2\Sigma_g^+]$ have been investigated previously using various experimental techniques, including emission [\[3–5\]](#page--1-0), laser absorption [\[6,7\],](#page--1-0) HeI photoelectron [\[8–15\],](#page--1-0) threshold photoelectron (TPE)[\[16,17\]](#page--1-0), photoionization efficiency [\[18–20\],](#page--1-0) photoelectron–photon coincidence [\[21\]](#page--1-0), photoion–photon coincidence [\[22\],](#page--1-0) photoelectron–photoion coincidence [\[23\],](#page--1-0) pulsed field ionization (PFI)–photoelectron (PFI-PE) [\[24–28\]](#page--1-0), PFI-PE-photoion (PFI-PE-PI) coincidence [\[29\]](#page--1-0) measurements, and resonance enhanced multiphoton ionization [\[30,31\].](#page--1-0) However, there are few reports on the vibronic level-selected excitation and dissociation spectroscopy for CO $_2^{\scriptscriptstyle +}$, which could provide more detailed information for the photochemistry of CO $_2^{\scriptscriptstyle +}$ in a direct way compared to the photoelectron spectra of neutral molecule. In our previous study, we obtained the $[1 + 1]$ two-photon dissociation spectra of $\text{CO}_2^+(X^2\Pi_g(\Omega=1/2))$ via $\text{A}^2\Pi_{u,1/2}(v_1v_20) \leftarrow X^2\Pi_{g,1/2}(000)$ transitions [\[32\].](#page--1-0) Because the (000) band intensity of $CO₂⁺(X²$ $\Pi_g(\Omega = 3/2)$) is much weaker than that of $\text{CO}_2^+(\text{X}^2\Pi_g(\Omega = 1/2))$, a higher signal to noise ratio is needed to study $\mathcal{O}_2^+(X^2\Pi_g\Omega = \text{higher signal}$ $3/2$) ions. In this study, we present a similar study on the $[1 + 1]$ two-photon dissociation spectra of $CO_2^+(X^2\Pi_g(Q=3/2))$ with a pulsed tunable laser with a wavelength range of 283–353 nm. By combining data from this study with the data from our previous study, more integrated data on the $\text{A}^2\Pi_\text{u}$ state of CO $_2^+$ was obtained.

The experimental setup has been previously described [\[32–34\].](#page--1-0) Jet-cooled $CO₂$ molecules were produced by supersonic expansion of pure $CO₂$ gas at about 3 atm through a pulsed nozzle (General Valve) with a nozzle orifice diameter of 0.5 mm and were introduced into a photoionization chamber. The ionization laser at 333.69 nm was perpendicularly focused on the molecular beam of CO₂ by a quartz lens with $f = 135$ mm to produce a CO₂ ion via [3 + 1] resonance-enhanced multiphoton ionization (REMPI) of CO₂ molecules [\[30,31\].](#page--1-0) The dissociation laser (\sim 0.2 mJ/pulse) at 283–353 nm counterpropagating with the ionization laser was focused by a quartz lens with $f = 320$ mm to excite $CO_2^+(X^2\Pi_{g,3/2})$. Both lasers were temporally and spatially matched with each other at the laser-molecular interaction point. The wavelength of the lasers was calibrated using a wavemeter.

The ions were extracted and accelerated into a TOF (time of flight) mass spectrometer and drifted along a 70 cm long TOF tube. The ions were detected by a microchannel plate (MCP) detector, and the signals from the MCP output were amplified by a preamplifier (Stanford model SR240A). The mass-resolved data were collected by averaging the amplified signals for the selected mass species with a transient recorder and stored in a personal computer. The intensities of the ionization laser and the dissociation lasers were monitored simultaneously during the experiment.

As revealed by Wu and co-workers [\[35\],](#page--1-0) in the resonance-enhanced multiphoton ionization photoelectron spectrum (REMPI-PES) of CO₂ via $3p\pi_u^1\Delta_u(\Omega = 3/2)$ spin–orbit state, the (000) level of $CO_2^+(X^2\Pi_{g,3/2})$ is much stronger than those related to the higher vibrational levels of $CO_2^+(X^2\Pi_{g,3/2})$ (see Fig. 1b in Ref. [\[35\]](#page--1-0)). In this study, the CO₂⁺ ions were prepared in $X^2\Pi_{g,3/2}(000)$ states with minimum amounts of $CO⁺$, $O⁺$, and $C⁺$ ions, with a lens with $f = 135$ mm to focus the ionization laser (\sim 5 mJ/pulse) at 333.69 nm. The involved [3 + 1] REMPI process of CO₂ to prepare $\mathrm{CO}_2^+(X^2\Pi_{g,3/2}(000))$ ions has been previously described [\[30,31\].](#page--1-0)

Corresponding author. E-mail address: lmzha@ustc.edu.cn (L. Zhang).

^{0022-2852/\$ -} see front matter © 2010 Elsevier Inc. All rights reserved. doi:[10.1016/j.jms.2010.03.006](http://dx.doi.org/10.1016/j.jms.2010.03.006)

$$
CO_2\Big(X^1\Sigma_g^+\Big)\mathop\rightarrow\limits^{3h\nu}CO_2(3p\pi_u^{-1}\Delta_u(3/2))\mathop\rightarrow\limits^{h\nu}CO_2^+\big(X^1\Pi_{g,3/2}(000)\big)+e.
$$

The mass-resolved photodissociation spectra (the depletion spectrum of parent ion CO $_2^{\scriptscriptstyle +}$ and the enhanced spectrum of fragment ions CO⁺, O⁺, and C⁺) in Fig. 1 were obtained by scanning the dissociation laser in the range of 283–353 nm. Based on the spectroscopy of $CO₂⁺$ previously reported [\[3,4,15,27,28,36\],](#page--1-0) the photodissociation spectra could be completely assigned as the electronic transition of $CO_2^+(A^2\Pi_{u,3/2}(v_1v_20)) \leftarrow CO_2^+(X^2\Pi_{g,3/2}(000))$, where v_1 and v_2 represent vibrational quantum numbers for the v_1 (symmetric stretching) and v_2 (bending) modes, respectively. The possible assignments of the photodissociation spectra shown in Fig. 1 are summarized in [Table 1](#page--1-0). Note that the photodissociation spectra can be complicated by vibration–electronic interaction (Renner– Teller effect) and Fermi resonance interaction related to $CO₂⁺(A²)$ $\Pi_{u,3/2}(v_1v_20)$. The vibration–electronic interaction induces the Renner–Teller splitting of a $^2\Pi$ state (lower μ and upper κ components of $A^2\Pi_{u,3/2}$ in [Table 1\)](#page--1-0) whenever the bending vibration v_2 is excited [\[37\]](#page--1-0). Because the vibrational frequencies of $\mathcal{O}_2^+(\mathbb{A}^2\Pi_{\mathsf{u},3/2})$ have the approximate relationship $v_1 \sim 2v_2$, a group of vibrational levels involving the symmetric stretch v_1 and overtones of the bending vibration v_2 , such as the $(v_1,0,0)$ and $(v_1-1,2,0)$ levels of CO_2^+ $(A^2\Pi_{\mathsf{u},3/2})$ can be coupled through strong Fermi resonances. Because of the strong Fermi resonance interaction, the unfavorable Franck– Condon transitions $\mathrm{A}^2\Pi_{\mathsf{u},3/2}(v_1\text{-}1,\!2,\!0)$ \leftarrow $\mathrm{X}^2\Pi_{\mathsf{g},3/2}(0\,0\,0)$ can occur with comparable intensities due to strongly allowed transitions $\mathrm{A}^{2}\Pi_{\mathsf{u},\;3/2}(\overline{\nu}_{1}00)\leftarrow\mathrm{X}^{2}\Pi_{\mathrm{g},\;3/2}(000)$, which is indicated in Fig. 1.

As shown in [Table 1,](#page--1-0) the $v_{\rm expt}$ values of A(v_1 00; v_1 = 0 – 6)² $\Pi_{3/2}$, A(020; 520) $\mu^2\Pi_{3/2}$, and A(020; 320; 420; 520) $\kappa^2\Pi_{3/2}$ are in good agreement with the known v_{PES} values [\[28\].](#page--1-0) Based on the data for the $A^2\Pi_{u,1/2} \leftarrow X^2\Pi_{g,1/2}$ transition in our previous study and the $\mathrm{A}^{2}\Pi_{\mathsf{u},3/2} \leftarrow \mathrm{X}^{2}\Pi_{\mathsf{g},3/2}$ transition presented in this work, it is now possible to identify several unresolved A(v_1v_2 0) $\mu^2\Pi_{3/2,1/2}$ and A(v_1v_2 0) $\kappa^2 \Pi_{3/2,1/2}$ bands [\[28\].](#page--1-0) For example, we could certainly give the resolved $v_{\rm expt}$ values of A(120, 220, 320, 420) $\mu^2\Pi_{3/2}$ and A(120, 220) $\kappa^2 \Pi_{3/2}$ bands to improve the unresolved v_{PES} values of the A(120, 220, 320, 420) $\mu^2 \Pi_{3/2,1/2}$ and A(120, 220) $\kappa^2 \Pi_{3/2,1/2}$ bands in Ref. [\[28\]](#page--1-0).

The spectral constants of T_e = 27969.3 \pm 1.2 cm⁻¹ [above $CO_2^+(X^2\Pi_{g,3/2})$, $v_1 = 1125.89 \pm 0.53$ cm⁻¹, $\chi_{11} = -0.659 \pm 0.010$ cm⁻¹, $v_2(\mu^2 \Pi_{3/2}) = 429.5 \pm 9.7$ cm⁻¹, and $v_2(\kappa^2 \Pi_{3/2}) = 528.7 \pm 8.0$ cm⁻¹ for $\text{CO}_2^+(A^2\Pi_{u,3/2})$ were deduced from the $A^2\Pi_{u,3/2}(v_1v_20) \leftarrow X^2\Pi_{g,3/2}(v_1v_20)$ $_{2}(000)$ transitions of CO₂. The deduced vibrational frequencies for

Fig. 1. The mass-resolved $[1 + 1]$ photodissociation spectra of CO₂⁺ obtained in the wavelength range of 283–353 nm. The spectra are assigned to the $A^2\Pi_{u,3/2}$ $\mathbf{Z}_2(\upsilon_1\upsilon_2\mathbf{0}) \leftarrow \mathsf{X}^2\Pi_{\mathsf{g},3/2}(\mathbf{000})$ transitions of CO $_2^+$.

 $CO_2^+(A^2\Pi_{u,3/2})$ are in accordance with those of $v_1 = 1127 \text{ cm}^{-1}$, and v_2 = 461 cm⁻¹ given by emission spectra [\[3,4\]](#page--1-0) and PFI-PE [\[28\]](#page--1-0) spectra.

In addition, the spectral band of $\rm B^2\Sigma_u^+(000) \leftarrow X^2\Pi_{g,3/2}(000)$ was also observed due to the overlap between $\mathsf{A}^2\Pi_{\mathsf{u},3/2}$ and $\mathsf{B}^2\Sigma_{\mathsf{u}}^+$.

Considering that the one-photon excitation energy (3.51– 4.38 eV) related to the resonance peaks in Fig. 1 cannot access the dissociation limit of CO_2^+ for the formation of O^+ (5.2738 eV), $CO⁺$ (5.6724 eV) [\[29\]](#page--1-0), and $C⁺$ (6.98 eV) [\[38\]](#page--1-0) from its electronic ground state, two photon excitation energy (7.02–8.76 eV) is needed to dissociate $CO₂⁺$. This means that the dissociation process of CO₂⁺ via A² $\Pi_{u,3/2}(v_1v_2|0) \leftarrow X^2\Pi_{g,3/2}(000)$ transitions to produce $CO⁺$, $O⁺$, and $C⁺$ is a [1 + 1] two-photon process, that is, the intermediate state in this photodissociation process is the $A^2\Pi_{u,3/2}$ state of CO_2^+ .

Fig. 1 shows that $CO⁺$ is the main ionic product in the $[1 + 1]$ photodissociation process of CO_2^+ compared to O^+ and C^+ . Moreover, the C^+ yield is higher than the O^+ yield, even though the dissociation limit to form $O⁺$ is the lowest. The percentage branching ratios of $[CO^+]/([CO^+] + [O^+] + [C^+])$, $[C^+]/([CO^+] + [O^+] + [C^+])$, and $[O^+]/([CO^+] + [O^+] + [C^+])$ measured in this work in the two photon energy range of 57000–70600 cm^{-1} are shown in [Fig. 2.](#page--1-0) The $[CO⁺] / ([CO⁺] + [O⁺] + [C⁺])$ percentage branching ratio of 69–79% is much larger than the percentage branching ratios of $[C^*]$ $([CO⁺] + [O⁺] + [C⁺])$ and $[O⁺] / ([CO⁺] + [O⁺] + [C⁺]),$ which were 14-20% and 6–11%, respectively. Similar photofragment branching ratios were also observed for the $(v_1 + 1, 0, 0)^2 \Pi_{3/2}$, $(v_1, 2, 0) \mu^2 \Pi_{3/2}$, and $(v_1, 2,0)\kappa^2 \Pi_{3/2}$ bands.

Since $CO⁺$ is the main ionic product compared to $O⁺$ for the ionization energy of $CO₂$ exceeding 19.5000 eV [5.7235 eV above $CO_2^+(X^2\Pi_{g,3/2}(000))]$ [\[29\]](#page--1-0) in the PFI-PEPICO experiment, it is reasonable to assume that the dissociation dynamics for the vibrationally excited levels of CO $_2^+(\mathsf{C}^2\Sigma_{\mathrm{g}}^+)$ [\[39,29\]](#page--1-0) are also applicable in the internal energy range of 7.02–8.76 eV above $CO_2^+(X^2\Pi_{g,3/2}(000))$. In terms of energy, a two photon energy of 7.02–8.76 eV can reach the high vibrational levels in the ($\mathsf{C}^2\Sigma_{\mathrm{g}}^{\mathrm{+}}$)[†] state via the allowed transitions of $(C^2\Sigma_g^+)^{\dagger} \leftarrow A^2\Pi_{u,1/2} \leftarrow X^2\Pi_{g,1/2}$, where the superscript "†" denotes high vibrational levels in the corresponding electronic states. In addition, both the repulsive CO_2^+ ($b^4\Pi_u/{}^4B_1$) state connected with $CO^+(X^2\Sigma^+)+O(^3P_g)$ and the repulsive CO_2^+ $(a^4\Sigma_g^-)$ state connected with $O^+(^4S_u) + CO(X^1\Sigma^+)$ cover the energy range of 7.02–8.76 eV, where $b^4\Pi_u/^4B_1$ represents either $^4\Pi_u$ for the linear geometry or ${}^{4}B_1$ for the bent geometry (more stable geometry for this state) [\[39\].](#page--1-0) Thus, the dissociation should depend on the ways to reach $CO_2^+(b^4\Pi_u/^4B_1)$ or $CO_2^+(a^4\Sigma_g^-)$. The direct transitions of $b^4\Pi_{\rm u}/^4{\rm B}_1\leftarrow \bar{\rm A}^2\Pi_{\rm u}$ and $a^4\Sigma_{\rm g}^ \leftarrow {\rm A}^2\Pi_{\rm u}$ are forbidden by selection rules of $u \leftarrow \rightarrow u$ or/and $S = 3/2 \leftarrow \rightarrow S = 1/2$. Additionally, the direct predissociation of $CO_2^+(C^2\Sigma_g^+)$ ions via the $a^4\Sigma_g^-$ state to form $O^+(4S)$ + CO($X^1\Sigma^+$) is not possible because the spin–orbit coupling integral for these states $\langle a^4\Sigma_{\rm g}^+, m_{\rm s} = 3/2 \mid {\bf L} \cdot {\bf S} \mid {\bf C}^2\Sigma_{\rm g}^+, m_{\rm s} = 1/2 \rangle$ gives no contribution for $\Delta m_s = 1$. Moreover, the predissociation of the vibrationally excited CO $_2^+ (C_2^2\Sigma_{\rm g}^+)^{\dagger}$ state at energies above the second dissociation limit CO⁺ ($X^2\Sigma^+$) + O(3P_g) can take place via the repulsive $b^4\Pi_u/^4B_1$ state because the spin–orbit coupling between these two electronic states is highly efficient (\approx 40 cm⁻¹). Other ways leading to $O^+(^4S_u) + CO(X^1\Sigma^+)$ by coupling between $CO_2^+(b^4\Pi_u/^4B_1)$ and $CO_2^+(a^4\Sigma_g^-)$, which leads to $CO^+(X^2\Sigma^+)$ + $O(^3P_g)$ by the spin-orbit interaction between $CO_2^+(b^4\Pi_u/^4B_1)$ and $CO_2^+(X^2\Pi_g)^\dagger$ are also possible.

As indicated by the branching ratios of $7.2-11.5$ for $[CO^+]/[O^+]$, a strong preference in the $[1 + 1]$ photodissociation process to form CO_2^+ is observed for the formation of the $CO^+(X^2\Sigma^+)$ + $O(^3P_g)$ channel compared to the formation of the lowest product channel $O^+(^4S_u)$ + CO($X^1\Sigma^+$). This fact can be rationalized by the more efficient spin–orbit couplings between this state and the $b^4\Pi_u/^4B_1$ state because CO $_2^+ (C^2\Sigma_{\rm g}^+)^{\dagger}$ is prepared in states at 7.02–8.76 eV.

Download English Version:

<https://daneshyari.com/en/article/5415222>

Download Persian Version:

<https://daneshyari.com/article/5415222>

[Daneshyari.com](https://daneshyari.com)