ELSEVIER

Contents lists available at ScienceDirect

Journal of Molecular Spectroscopy

journal homepage: www.elsevier.com/locate/jms

The high-resolution FTIR spectrum of the v_6 band of C_2H_3D

T.L. Tan *, G.B. Lebron

Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616, Singapore

ARTICLE INFO

Article history: Received 14 July 2010 In revised form 30 July 2010 Available online 9 August 2010

Keywords: Ethylene-d C₂H₃D Monodeuterated ethylene Ethylene High-resolution infrared spectrum Rovibrational constants FTIR study

ABSTRACT

The absorption spectrum of the ν_6 band of C_2H_3D centered near 1125.27674 cm $^{-1}$ in the 1100–1250 cm $^{-1}$ region was recorded with an unapodized resolution of 0.0063 cm $^{-1}$ using a Fourier transform infrared (FTIR) spectrometer. A total of 947 infrared transitions of the A–B hybrid-type band were assigned and fitted to upper-state (ν_6 = 1) rovibrational constants using a Watson's A-reduced Hamiltonian in the I^r representation up to eighth-order centrifugal distortion terms. The b-type infrared transitions of the band were analyzed for the first time. The root-mean-square deviation of the fit was 0.00062 cm $^{-1}$. The ground-state rovibrational constants up to eighth-order terms were also obtained by a fit of 617 combination differences from the present infrared measurements, simultaneously with 21 microwave frequencies with a root-mean-square deviation of 0.00055 cm $^{-1}$. From this work, the upper-state (ν_6 = 1) and ground-state constants of C_2H_3D were derived with the highest accuracy, so far. The a- and b-type transitions of the hybrid ν_6 band were found to be relatively free from local frequency perturbations. The ratio of the a- to b-type vibrational dipole transition moments (μ_a/μ_b) was found to be 1.05 \pm 0.10. From the ν_6 = 1 rovibrational constants obtained, the inertial defect Δ_6 was calculated to be 0.3570 \pm 0.0008 μ Ų.

1. Introduction

In the past few decades, infrared studies on the ethylene-d or C₂H₃D molecule were conducted with low to medium resolution [1–5] and with high resolution [6–10]. Furthermore, Hirota et al. [11] used microwave spectroscopy to measure 21 transitions and their analysis of the rotational spectra of C₂H₃D yielded accurate ground-state rotational and centrifugal distortion constants. Duncan et al. [1,2] did most of the assignments of the vibrational bands of C₂H₃D, in their comprehensive work on ethylene and its isotopic species. So far, most of the infrared measurements and analyses on C_2H_3D were carried out by Herbin and co-workers [4–8]. The v_{10} band in the $730-780 \text{ cm}^{-1}$ region, and v_7 and v_8 bands in the $830-890 \text{ cm}^{-1}$ regions of C_2H_3D were investigated separately [6,7] using a tunable diode laser spectrometer with a wavenumber accuracy better than 0.001 cm⁻¹. More recently, Tan et al. [9] and Lebron and Tan [10] collected the FTIR spectra of v_{12} and v_3 bands of C₂H₃D with a resolution of 0.004 and 0.0063 cm⁻¹, respectively in the 1240-1470 cm⁻¹ region. From their work, accurate upperstate ($v_{12} = 1$ and $v_3 = 1$) rovibrational constants of C_2H_3D were obtained and ground-state constants were further improved. In 1988, Herbin et al. [8] recorded the Fourier transform infrared (FTIR) spectra of the v_6 band along with v_4 , v_7 , v_8 , and v_{10} bands of C_2H_3D in the $725-1170\,\text{cm}^{-1}$ region with a resolution of 0.003 cm⁻¹. Their analysis involving 494 transitions yielded

upper-state rovibrational constants up to fourth-order terms and Coriolis interactions coupling terms for the five bands. Although the v_6 band is a hybrid A–B type, only a-type transitions of v_6 were studied in their work. The b-type transitions of v_6 in the 1150–1250 cm $^{-1}$ region have yet to be done.

The aim of this paper is to measure and analyze both a- and b-type infrared absorption lines of the hybrid v_6 band of C_2H_3D at a resolution of $0.0063~\rm cm^{-1}$ in the $1100-1250~\rm cm^{-1}$ region using the single-state model. By assigning and fitting a large number of transitions, more accurate rovibrational constants of the $v_6=1$ state were obtained that include three rotational, five fourth-order, and four sixth-order, and five eighth-order centrifugal distortion constants. The accuracy of the rovibrational ground-state constants up to eighth-order terms has been improved by a simultaneous fit of numerous ground-state combination differences (GSCD) derived from the present v_6 infrared transitions, together with 21 microwave frequencies [11]. The upper-state ($v_6=1$) and ground-state constants of C_2H_3D derived from this work are the most precise to date.

2. Experimental details

The C_2H_3D gas sample of 98% atomic isotopical purity used in the experiments was purchased from Cambridge Isotope Laboratories in Cambridge, MA, USA. The spectra were recorded with an unapodized resolution of 0.0063 cm $^{-1}$ using a Bruker IFS 125 HR Michelson Fourier transform spectrophotometer located at the

^{*} Corresponding author. Fax: +65 6896 9446. E-mail address: augustine.tan@nie.edu.sg (T.L. Tan).

Spectroscopy Laboratory of the National Institute of Education, Nanyang Technological University, Singapore. A globar infrared source together with a high-sensitivity liquid nitrogen cooled Hg–Cd–Te (MCT) detector and KBr beam splitter were used for all recordings. All spectral measurements were done at the ambient temperature of about 296 K. A gas pressure of about 5 torr in the cell was required to obtain strong absorption lines for the weak ν_6 band. A multiple-pass absorption cell with a 20-cm base path was used, and an absorption path of 8.0 m was achieved by adjusting for 40 passes in the cell.

A total of four runs of 200 scans each with a total scanning time of about 14 h were co-added to produce the final spectrum with a signal-to-noise ratio of about 35. The average full width at half maximum (FWHM) of the absorption lines in the spectrum was

observed to be about $0.0065~\rm cm^{-1}$ which was close to the spectral resolution of $0.0063~\rm cm^{-1}$. This gave an indication that pressure broadening was not significant. A background spectrum of the evacuated cell was recorded with a single run of 250 scans at a resolution of $0.0063~\rm cm^{-1}$. The ratio of the final C_2H_3D spectrum to the background spectrum yielded a transmittance spectrum with relatively smooth baseline.

Calibration of the absorption lines of ν_6 band of C_2H_3D were carried out using the N_2O lines in the 1235–1325 cm $^{-1}$ region, taken from Guelachvili and Rao [12]. The N_2O transitions were recorded just before those of the C_2H_3D . A correction factor of 1.000000922 was required to bring the observed wavenumbers into agreement with the calibrated frequencies. A relative precision of 0.000283 cm $^{-1}$ for all observed transitions was achieved by fitting 64 N_2O

Fig. 1. High-resolution (0.0063 cm⁻¹) plot in the 1120-1150 cm⁻¹ region of v_6 band of C_2H_3D showing a-type transitions in the P, Q, and R branches.

Fig. 2. High-resolution (0.0063 cm⁻¹) plot in the 1178–1204 cm⁻¹ region of v_6 band of C_2H_3D showing b-type transitions in the R branch, with ${}^R\!Q_3$ to ${}^R\!Q_7$ clusters.

Download English Version:

https://daneshyari.com/en/article/5415261

Download Persian Version:

https://daneshyari.com/article/5415261

Daneshyari.com