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a b s t r a c t

A modified effective scaling frequency factor (ESFF) method that takes advantage of the potential energy
distribution (PED) coefficients calculated in the basis of redundant primitive internal coordinates is pre-
sented. This approach is simpler and more flexible than that based on the natural internal coordinates.
The sets of optimal scaling factors for routine 9- and 11-parameter ESFF calculations based on B3LYP/
6-311G** force fields are derived from Baker’s training set of 30 molecules (660 frequencies). The calcu-
lated root-mean-square (RMS) deviations for all frequencies are 11.42 and 11.44 cm�1 for 9- and 11-
parameter scaling, respectively. They are somewhat lower than in the case of ordinary ESFF calculations.
The new sets of factors seem to be particularly well suited for scaling of frequencies in the middle region
of the vibrational spectra (1000–2500 cm�1) – the RMS values in this range are 8.37 for 9-, and 9.56 cm�1

for 11-parameter scaling. These values are to be compared with 9.20 and 10.29 cm�1, respectively, calcu-
lated within the natural coordinates based ESFF formalism.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Quadratic potential energy surface (PES) of a molecule is a rea-
sonable approximation of the real PES assuming that small atomic
displacements from the expansion point in the Taylor series (typi-
cally, an equilibrium geometry) are considered. When calculated at
high theoretical level it is capable of providing harmonic frequen-
cies and normal modes that can be attributed to fundamentals ob-
served in a variety of vibrational spectra (IR, Raman, etc.). This can
be accomplished my means of the GF matrix method [1,2]. Har-
monic frequencies often remain in large error compared to funda-
mentals – thus, they have to be corrected. One way is to use the
cubic and possibly higher-order terms in the expansion of PES
(see e.g. [3–5] and references therein). However, any extension of
PES beyond the quadratic form is extremely demanding from the
computational point of view, and therefore such applications are
not practical for large systems. Empirical scaling of the quadratic
force constants or harmonic frequencies of a molecule is an alter-
native and efficient method of obtaining accurate theoretical vibra-
tional spectra. The computational cost of calculating the corrected
frequencies is practically the same as in the case of ordinary har-
monic frequency calculations. Scaling methods are also known to
provide corrections for the deficiencies of the approximations used
in order to obtain the force constant matrix (the neglect of a part of

correlation effects in the wave function, the incompleteness of a
basis set etc.).

The leading method in the field of scaling is the scaled quantum
mechanical (SQM) force field method [6]. The method was first
implemented for the force fields expressed in terms of the non-
redundant linearly independent natural internal coordinates [7].
Such coordinates, often referred to as local-symmetry coordinates,
are linear combinations of primitive coordinates [8]. The basis for
the SQM method was then reformulated [9], and now the standard,
commercial implementation of the method [10] scales directly the
primitive valence force constants. In both formalisms the coordi-
nates are classified into chemically similar groups; the scaling fac-
tor for all coordinates within a given group is the same.

Recently, an alternative multi-parameter scaling method, called
an effective scaling frequency factor (ESFF) method, was proposed
[11]. The idea of classification of coordinates is retained in ESFF.
However, in contrast to SQM, it is a frequency scaling procedure.
Each harmonic frequency is scaled by its own, effective scaling fac-
tor (ESF). ESFs are constructed from the limited set of the so-called
local scaling factors (LSFs), as their sums weighted by the contribu-
tions of local modes to the given normal mode. The contributions
can be determined from the normalized diagonal potential energy
distribution (PED) coefficients [12] after solving the vibrational
problem. The original implementation of the ESFF procedure is
based on the transformation of the Cartesian force constants into
the set of linearly independent natural internal coordinates. Thus,
the calculated PED coefficients correspond to the contributions of
the local-symmetry motions that participate in the given overall
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(normal) molecular motion. Clearly, the constraints imposed on
the weights of primitive coordinates in the given natural coordi-
nate [8] may not fully account for the contributions of primitive
internals in a given mode in some cases. This will be shown in Sec-
tion 4.1 where the comparison of two different sets of PED coeffi-
cients (i.e. these calculated in the basis of non-redundant natural
and redundant primitive internal coordinates) is reported. In view
of the assumptions of the ESFF method this may constitute a disad-
vantage; a full set of the redundant primitive internal coordinates
seems to be more flexible in this respect. In spite of that, the ESFF
procedure turned out to be well suited for the calculations of the
vibrational spectra. The LSFs were carefully checked for transfer-
ability [13]. The training set of molecules proposed by Baker
et al. [9] was used, and the set of 660 experimental bands found
by us previously was considered. The calculations revealed that
the LSFs are at least as well transferable as the force constant fac-
tors of the SQM procedure. A slight reduction of the overall root-
mean-square deviation (RMS) was even obtained. This enabled us
to conclude that ESFF may be an alternative to SQM – it is simpler
and performs equally well as far as frequencies are concerned. The
high quality of the vibrational spectra predicted by the ESFF meth-
od was confirmed in the paper devoted to reducing of the number
of types of internal coordinates the scaling factors are attributed to
[14], as well as by other applications [15,16].

In this paper a new formalism of the ESFF method based on the
transformation of the Cartesian force constants into a redundant set
of primitive internal coordinates is presented. Apart from the (ex-
pected) above-mentioned higher flexibility of this set the obvious
advantage of the new formalism consists in simplification of the
ESFF calculations. All primitive coordinates were easily and auto-
matically generated on the basis of the atomic connectivities. Thus,
the tedious manual generation of the natural internal coordinates
we were carrying out so far was avoided. In a view of the applica-
tions of the ESFF procedure to really large systems (we are currently
working with the series of silicon-containing compounds and the
representative fragments of macromolecules obtained in the pro-
cesses of their polycondensation; other applications are also
planned) this reformulation is absolutely necessary.

2. Modified ESFF method

The solution of the vibrational problem within the GF matrix
formalism in the non-redundant internal coordinate representa-
tion sT = (s1,s2, . . . , s3N�6) [1,2],

Fsas ¼ G�1
s asx

2; ð1Þ

provides, in addition to the harmonic frequencies xi,
i = 1,2, . . . , 3N�6, an as transformation matrix defining the relation
between the internal coordinates s and the normal coordinates Q,
QT = (Q1,Q2, . . . , Q3N�6), i.e.

s ¼ asQ : ð2Þ

This matrix can be used to obtain the so-called PED coefficients
[12]

pii;k ¼
a2

s;ikFs;ii
P

j
a2

s;jkFs;jj
ð3Þ

which are the basic quantities in the ESFF procedure. The above-
mentioned, diagonal PED coefficients determine the contributions
of a given local motion (index i) to the kth normal mode. The refor-
mulation of the ESFF procedure in terms of the redundant primitive
coordinates rT = (r1,r2, . . . , rK), where K > 3N�6, has to be based on
the uniquely defined set of PED coefficients for a given set of r. Thus
the ar matrix (r = arQ) as well as the Fr matrix have to be found.

Since the force field of a molecule in the redundant set of internal
coordinates is not uniquely defined we decided to use the canonical
force constant matrix (see e.g. Refs. [17–23]).

The present version of our home-made ESFF program that takes
advantage of the non-redundant set of natural internal coordinates
was modified in the following way. The Br matrix (r = Brq, where q
is a column vector containing the Cartesian atomic displacements)
can be easily found for any r, and its Moore–Penrose generalized in-
verse Br

� [24–26] (see also Ref. [27] for a summary of the formulas)
fulfilling the Eckart conditions, can be determined. We use all prim-
itive internal coordinates that follow from the atomic connectivities.
The force constant matrix in the redundant coordinates representation

Fr ¼ ðB�r Þ
TfxB�r ; ð4Þ

where fx denotes the Cartesian force constant matrix, was trans-
formed to represent the canonical force field (Eq. (30) of Ref.
[19]). The solution of the vibrational problem

Frar ¼ G�1
r arx

2; ð5Þ

in which the Gr
�1 matrix is singular, was then carried out in the fol-

lowing way. First, the (rectangular) A transformation matrix to
(some) non-redundant internal coordinate set s (s = Ar) was deter-
mined. We actually used A = OT; O contains the eigenvectors that
diagonalize BrBr

T corresponding to non-zero eigenvalues. Then the
Moore–Penrose inverse Bs

� of the Bs matrix (Bs = ABr) was found,
the Fs matrix

Fs ¼ ðB�s Þ
TfxB�s ð6Þ

was constructed, and the vibrational problem (1) was solved. The cal-
culated frequencies were identical as these obtained on the basis of
the Cartesian force fields using the PQS quantum chemistry package
[28,29]. Since q = Bs

�s = Bs
�asQ and r = Brq = arQ we conclude that

ar ¼ BrB
�
s as: ð7Þ

Having defined the ar and the canonical Fr matrices the PED
coefficients can be uniquely defined according to Eq. (2), in which
subscript ‘‘s” is to be replaced by ‘‘r”. Then, the ESFF scaling proce-
dure can be carried out in the usual way.

When working with the redundant internal coordinates the use
of the canonical force constants appears to be a natural choice. As
will be demonstrated the frequencies scaled within this new for-
malism are by no means inferior compared to these, based on
the original, natural internal coordinates based formalism. How-
ever, we also implemented the modified scheme, in which the con-
tributions of local modes to the given normal mode were
calculated on the basis of the amplitudes a only, i.e. we redefined
pii,k (note that they will no longer be called PEDs; the word ‘‘contri-
butions” will be used instead) according to

pii;k ¼
a2

ikP

j
a2

jk

: ð8Þ

With this definition the ESFF scaling procedure will be referred
to as ESFF2. To justify to some extent this modification we mention
at this point that the deviations from the parabolic shape of PES
(which are expected to be accounted for by the scaling procedures)
increase along with an increase of the displacement of the internal
coordinates from their equilibrium values regardless the value of
the diagonal force constant. It should be remembered, however,
that the anharmonicity of PES is also a function of force constants.
Note that the proposed modification can be used in both formal-
isms of the ESFF method (i.e. based on the non-redundant natural
and redundant primitive internal coordinates), and for this reason
the subscripts ‘‘s” and ‘‘r” are missing in Eq. (8). In the following the
ESFF2 results will also be reported.
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