

Journal of Molecular Spectroscopy 246 (2007) 133-157

Journal of
MOLECULAR
SPECTROSCOPY

www.elsevier.com/locate/jms

Air-broadened halfwidth and pressure shift coefficients of  $^{12}\text{C}^{16}\text{O}_2$  bands:  $4750\text{--}7000 \text{ cm}^{-1}$ 

R.A. Toth a,\*, C.E. Miller , V. Malathy Devi , D.C. Benner , L.R. Brown a

<sup>a</sup> Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
 <sup>b</sup> The College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA

Received 25 July 2007; in revised form 4 September 2007 Available online 21 September 2007

#### Abstract

Previously we obtained self-broadened halfwidth and self-induced shift coefficients at room temperature for 15 near infrared  $CO_2$  bands between 4750 and 7000 cm<sup>-1</sup> [R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc., 239 (2006) 243–271]. The present study expands our work on the near infrared line parameters of  $CO_2$  to include air broadening coefficients. Here we report nearly 400 air-broadened half width and air-induced pressure shift coefficients spanning 11 different  $CO_2$  vibrational bands in the 4750–7000 cm<sup>-1</sup> region. Retrievals have been performed using Voigt line profiles over three distinct spectral intervals: (a) 4750–5200 cm<sup>-1</sup>, covering the  $20011 \leftarrow 00001$ ,  $20012 \leftarrow 00001$ , and  $20013 \leftarrow 00001$  Fermi Triad and three associated hot bands  $21111 \leftarrow 01101$ ,  $21112 \leftarrow 01101$ ,  $21113 \leftarrow 01101$ ; (b) 6100-7000 cm<sup>-1</sup>, covering the  $30011 \leftarrow 00001$ ,  $30012 \leftarrow 00001$ ,  $30013 \leftarrow 00001$  and  $30014 \leftarrow 00001$  Fermi Tetrad; (c) near 6950 cm<sup>-1</sup> for the  $00031 \leftarrow 00001$  overtone band. The air-broadened halfwidth and air-induced pressure shift coefficients have been modeled with empirical expressions and compared to other measurements available in the literature.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Carbon dioxide; CO2; Air-broadening; Near infrared; Lorentz widths; Pressure shift

### 1. Introduction

The current state of knowledge for CO<sub>2</sub> line-by-line parameters does not provide sufficient accuracies for OCO and other carbon cycle remote sensing applications [1]. Thus the HITRAN 2004 spectral line parameters [2] do not support the stringent 0.3% precision requirements for analysis of atmospheric measurements, despite efforts already underway to monitor atmospheric CO<sub>2</sub> from the ground [3,4] and from space [5,6] using near infrared detection. The need for more sensitive remote sensing measurements and the increasing sophistication in remote sensing instrumentation drives the demand for better line-by-line reference parameters.

Toward that end, we are performing a systematic reinvestigation of the near infrared CO<sub>2</sub> spectrum designed to provide spectroscopic reference parameters with the accuracy required to support current and planned CO<sub>2</sub> remote sensing measurements. Our analyses to date provide better accuracy for line positions and line intensities of over 150 bands involving eight isotopologues [7-10]. Self-broadened halfwidth and pressure shift coefficients are considered for 15 bands of <sup>16</sup>O<sup>12</sup>C<sup>16</sup>O [11], and the present study describes the corresponding analysis of air broadening. Accurate values of air-broadening parameters are important for analysis of atmospheric measurements and provide one part to meet the 0.3% requirement. Two other parts are accurate values of zero pressure line positions and line intensities of which our recent studies provide for <sup>16</sup>O<sup>12</sup>C<sup>16</sup>O [7,10]. Obviously the final part is to apply these parameters to the analysis of accurately obtained atmospheric measurements.

<sup>\*</sup> Corresponding author. Fax: +1 818 354 5148. E-mail address: ratoth@jpl.nasa.gov (R.A. Toth).

The experimental data cover the 4750–7000 cm<sup>-1</sup> range and include 11 different vibrational bands:  $20011 \leftarrow 00001$ ,  $20012 \leftarrow 00001$ ,  $20013 \leftarrow 00001$ ,  $21111 \leftarrow 01101$ ,  $21112 \leftarrow 01101$ ,  $21113 \leftarrow 01101$ ,  $30011 \leftarrow 00001$ ,  $30012 \leftarrow 00001$ ,  $30013 \leftarrow 00001$ ,  $30014 \leftarrow 00001$ , and  $00031 \leftarrow 00001$ . We are reporting 389 halfwidth and 433 pressure-shift coefficients of  $^{16}O^{12}C^{16}O$  (626) transitions determined using spectrum-by-spectrum retrieval and standard Voigt line shapes. Separate constrained multispectrum analyses of the  $30012 \leftarrow 00001$  [12] and  $30013 \leftarrow 00001$  bands [13] demonstrate the importance of speed-dependent line shapes and line mixing for further reducing measurement uncertainties.

Table 1 summarizes the previous studies of air,  $N_2$  and  $O_2$  broadening of  $CO_2$  throughout the infrared, listing the band(s) studied, range of transitions with number of transitions measured, molecular species of  $CO_2$ , instrument used to obtain spectra, type of broadening gas and broadening parameters obtained. The previous studies involving air-broadening of  $CO_2$  include four studies by Devi et al. [12–15]. Also considered are the measurements of  $N_2$  and  $O_2$  broadening from which air-broadened halfwidth coefficients,  $b^0(\text{air})$ , can be derived using the expression:

$$b^{0}(air) = 0.79b^{0}(N_{2}) + 0.21b^{0}(O_{2}).$$
(1)

Prior  $N_2$  and  $O_2$  broadening measurements of  $CO_2$  include the following studies: Tanaka et al. [16], De Rosa et al. [17], Margottin-Maclou et al. [18]. Corsi et al. [19], Dana et al. [20], Hikida and Yamada [21], and Pouchet

et al. [22]. As seen from Table 1, the present study substantially increases the air broadening information for near infrared bands of carbon dioxide.

#### 2. Experimental details

All spectra were recorded over the 4750-7000 cm<sup>-1</sup> range with the McMath-Pierce Fourier transform spectrometer (FTS) located at the Kitt Peak National Solar Observatory. A full description of the experimental details (pressure gauges, absorption cells, gas handling, and instrument) was given in our previous work of line positions and strengths of <sup>16</sup>O<sup>12</sup>C<sup>16</sup>O [10]. For the present work, the samples contained small amounts of CO2 in natural abundance mixed with dry air. For each spectral run, the CO<sub>2</sub> gas was admitted into the evacuated absorption cell, the pressure was recorded; then dry air was added and the total pressure was recorded. The gas sample was allowed to stabilize thermally, after which a spectrum of 10 or more co-added interferograms was recorded over a period of ~90 min. The CO<sub>2</sub> partial pressure was checked by comparing retrieved line strengths with those of Ref. [10]. This procedure showed that the initial CO<sub>2</sub> pressures determined from the pressure gauge were accurate to better than 1% which is more than adequate for obtaining accurate air-broadening parameters. The total sample pressures were known to better than 0.5%.

Table 2 gives the experimental conditions for each run. The columns contain the run identification number, CO<sub>2</sub> partial pressure, air partial pressure, total pressure, CO<sub>2</sub>

Table 1 Summary of previous air, N<sub>2</sub>, and O<sub>2</sub> broadening studies of CO<sub>2</sub>

| Reference                    | Band          | Range <sup>a</sup> | #Lines | Mol <sup>b</sup> | Instr.c | Air <sup>d</sup> | $N_2^{d}$ | $O_2^{d}$ | Widths | Shifts |
|------------------------------|---------------|--------------------|--------|------------------|---------|------------------|-----------|-----------|--------|--------|
| Devi et al. [12]             | 30012-00001   | P54-R52            | 54     | 626              | FTS     | X                |           |           | X      | Х      |
| Devi et al. [13]             | 30013-00001   | P58-R56            | 58     | 626              | FTS     | X                |           |           | X      | X      |
| Devi et al. [14]             | 00011-10001   | P48-R48            | 49     | 626              | FTS     | X                | X         |           | X      | X      |
|                              | 00011-10002   | P52-R44            | 49     | 626              | FTS     | X                | X         |           | X      | X      |
|                              | 00011 - 10001 | P40-R40            | 41     | 636              | FTS     | X                | X         |           | X      | X      |
|                              | 00011-10002   | P40-R40            | 41     | 636              | FTS     | X                | X         |           | X      | X      |
| Devi et al. [15]             | 10002-00001   | P46-R46            | 93     | 638              | FTS     | X                | X         |           | X      | X      |
|                              | 10001-00001   | P50-R45            | 93     | 638              | FTS     | X                | X         |           | X      | X      |
| Tanaka et al. [16]           | 11102-00001   | P46-R44            | 30     | 626              | FTS     |                  | X         | X         | X      | X      |
|                              | 11101-00001   | P60-R13            | 31     | 626              | FTS     |                  | X         | X         | X      |        |
| De Rosa et al. [17]          | 30012-00001   | P18-P10            | 5      | 626              | TDL     |                  | X         | X         | X      | X      |
| Margottin-Maclou et al. [18] | 00011-00001   | R0-R82             | 12     | 626              | Grat    |                  | X         | X         | X      |        |
|                              | 10011-00001   | R0-R48             | 9      | 626              | Grat    |                  | X         | X         | X      |        |
| Corsi et al. [19]            | 20012-00001   | R22-R46            | 13     | 626              | TDL     |                  | X         | X         | X      | X      |
| Dana et al. [20]             | 11101-10002   | P22-R26            | 13     | 626              | FTS     |                  | X         | X         | X      |        |
| Hikida, Yamada [21]          | 30013-00001   | P28-R28            | 10     | 626              | TDL     |                  | X         | X         | X      |        |
| Pouchet et al. [22]          | 30013-00001   | R2-R20             | 5      | 626              | TDL     |                  | X         | X         | X      |        |

<sup>&</sup>lt;sup>a</sup> The range of quantum numbers reported.

<sup>&</sup>lt;sup>b</sup> <sup>16</sup>O<sup>12</sup>C<sup>16</sup>O, <sup>16</sup>O<sup>13</sup>C<sup>16</sup>O and <sup>16</sup>O<sup>13</sup>C<sup>18</sup>O are written as 626, 636 and 638, respectively.

<sup>&</sup>lt;sup>c</sup> The instrument types are Fourier transform spectrometer (FTS), Tunable diode laser (TDL) and grating (Grat).

<sup>&</sup>lt;sup>d</sup> The perturbing gas in the studies.

## Download English Version:

# https://daneshyari.com/en/article/5415735

Download Persian Version:

https://daneshyari.com/article/5415735

<u>Daneshyari.com</u>